Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bioethanol

Ed. by Ruiz, Héctor

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-6788
See all formats and pricing
More options …

A Review of Life Cycle of Ethanol Produced from Biosyngas

Poritosh Roy / Animesh Dutta
Published Online: 2013-07-29 | DOI: https://doi.org/10.2478/bioeth-2013-0001

Abstract

This review compiled the life cycle (LC) studies on ethanol produced via gasification of biomass centering on greenhouse gas (GHG) emission and production cost to discuss their potential environmental and socioeconomic impacts. Numerous efforts have been made to evaluate the LC of ethanol produced with biosynthesis (gasification-microbial fermentation) and chemical synthesis (gasification-catalytic synthesis) of syngas produced from biomass (hereafter referred to biosyngas), and deals with system boundary, feedstock, energy paths and utilization of by-products to determine the environmental impacts as well as the production cost. It seems that most of the LC studies were conducted based on different research targets. Most of the reviewed studies support the environmental and economic viability of ethanol except for a few examples. A wide variation was observed in the reported GHG emission and production cost of ethanol which are dependent on the system boundary and assumptions, feedstock, conversion technologies and plant sizes. Consequently, in-depth studies are needed for each stage of the LC of ethanol from biosyngas for any future investment, commercial production, and sustainability. Moreover, a careful consideration has to be placed on the land use change and soil quality and their rebound effects if lignocellulosic biomass is to be put to use in the ethanol industry

Keywords: Biomass; biosyngas; ethanol; life cycle (LC); GHG emissions; production cost; LCA

References

  • [1] Environment Canada, Renewable fuels regulations, 2010, http://www.ec.gc.ca/lcpe-cepa/eng/regulations/ detailReg. cfm?intReg=186 (accessed on 2/11/2011).Google Scholar

  • [2] Yang J., Huang J., Qiu H., Rozelle S., Sombilla, M.A., Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade, Appl. Energy., 2009, 86: S37-S46.CrossrefGoogle Scholar

  • [3] Mueller S.A., Anderson J.E., Wallington T.J., Impact of biofuel production and other supply and demand factors on food price increases in 2008, Biomass Bioenerg., 2011, 35, 1623-1632.CrossrefGoogle Scholar

  • [4] Zaldivar J., Nielsen J., Olsson L., Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration, Appl. Microbiol. Biotechnol., 2001, 56, 17-34.CrossrefGoogle Scholar

  • [5] Gray K.A., Zhao L.S., Emptage M., Bioethanol. Curr. Opin. Chem. Biol., 2006, 10, 141-146.CrossrefGoogle Scholar

  • [6] Hägerdal H.B., Galbe M., Gorwa-Grauslund M.F., Liden G., Zacchi G., Bioethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol., 2006, 24, 549-556.CrossrefGoogle Scholar

  • [7] Cardona C.A., Sa´nchez O´.J., Fuel ethanol production: Process design trends and integration opportunities. Bioresour. Technol., 2007, 98, 2415-2457.CrossrefGoogle Scholar

  • [8] Sánchez O´.J., Cardona C.A., Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresour. Technol., 2008, 99, 5270-5295.CrossrefGoogle Scholar

  • [9] Pant D., Singh A., Van Bogaert G., Gallego Y.A., Diels L., Vanbroekhoven V., An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects, Ren. Sus. Energy Rev., 2011, 15, 1305-1313.CrossrefGoogle Scholar

  • [10] Subramani V., Gangwal S.K., A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol, Energy Fuels, 2008, 22, 814-839.CrossrefGoogle Scholar

  • [11] Cherubini F., Bird N.D., Cowie A., Jungmeier G., Schlamadinger B., Woess-Gallasch S., Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations, Res. Cons. Recycl., 2009, 53, 434-447.CrossrefGoogle Scholar

  • [12] Johnson E., Goodbye to carbon neutral: Getting biomass footprints right, Environ. Impact Assess. Rev., 2009, 29, 165-168.Google Scholar

  • [13] Luo L., van der Voet E., Huppes G., An energy analysis of ethanol from cellulosic feedstock-corn stover, Ren. Sus. Energy Rev., 2009, 13, 2003-2011.CrossrefGoogle Scholar

  • [14] Williams P.R.D., Inman D., Aden A., Heath G., Environmental and sustainability factors associated with next-generation biofuels in the US: what do we really know, Environ. Sci. Technol., 2009, 43, 4763-4775.CrossrefGoogle Scholar

  • [15] Gnansounou E., Production and use of lignocellulosic bioethanol in Europe: Current situation and perspectives, Bioresour. Technol., 2010, 101, 4842-4850.CrossrefGoogle Scholar

  • [16] Gnansouno E., Dauriat A., Techno-economic analysis of lignocellulosic ethanol: A review, Bioresour Technol, 2010, 101, 4980-4991.CrossrefGoogle Scholar

  • [17] Mabee W.E., Saddler J.N., Bioethanol from lignocellulosics: Status and perspectives in Canada, Bioresour. Technol., 2010, 101, 4806-4813.CrossrefGoogle Scholar

  • [18] Singh A., Pant D., Korres N.E., Nizami A.S., Prasad S., Murphy J.D., Key issues in LC assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives, Bioresour. Technol., 2010, 101, 5003-5012.CrossrefGoogle Scholar

  • [19] Nigam P.S., Singh A., Production of liquid biofuels from renewable resources, Prog. Energy Comb. Sci., 2011, 37, 52-68.CrossrefGoogle Scholar

  • [20] Roy P., Tokuyasu K., Orikasa T., Nakamura N., Shiina T., A review of life cycle assessment (LCA) of bioethanol from lignocellulosic biomass, Jpn. Agril. Res. Quat., 2012, 46, 41-57.CrossrefGoogle Scholar

  • [21] ISO (International Organization for Standardization), ISO 14040 Environmental management-Life cycle assessment-Principles and framework, 1997. Google Scholar

  • [22] Global Bioenergy Partnership (GBEP), The GBEP common methodological framework for GHG lifecycle analysis of bioenergy-Version Zero, 2009, http://www.globalbioenergy. org/fileadmin/user_upload/gbep/docs/2009_events/7th_ SC_NY/GBEP_GHG_report_2306.pdf.Google Scholar

  • [23] ISO (International Organization for Standardization) ISO 14040: 2006(E) Environmental management - Life cycle assessment -Principles and framework, 2006.Google Scholar

  • [24] Phillips S., Aden A., Jechura J., Dayton D., Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass, National Renewable Energy Laboratory, Technical Report, NREL/TP-510-41168, 2007.Google Scholar

  • [25] Brown R.C., Hybrid Thermochemical/Biological Processing: Putting the cart before the horse? Appl. Biochem. Biotechnol., 2007, 136-140, 947-956.Google Scholar

  • [26] Henstra A.M., Sipma J., Rinzema A., Stams A.J.M., Microbiology of synthesis gas fermentation for biofuel production, Curr. Opin. Biotechnol., 2007, 18, 200-206.CrossrefGoogle Scholar

  • [27] Weber C., Farwick A., Benisch F., Brat D., Dietz H., Subtil T., et al., Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels, Appl. Microbiol. Biotechnol., 2010, 87, 1303-1315.CrossrefGoogle Scholar

  • [28] Aden A., Ruth M., Ibsen K., Jechura J., Neeves K., Sheehan J., et al., Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover, NREL/TP-510-32438, 2002, National Renewable Energy Laboratory, Golden, Colorado, USA.Google Scholar

  • [29] Wang Y., Yan L., CFD studies on biomass thermochemical conversion, Int. J. Mol. Sci., 2008, 9, 1108-1130.CrossrefGoogle Scholar

  • [30] Pereira E.G., da Silva J.N., Jofran L., de Oliveira J.L., Cássio S., Machado C.S., Sustainable energy: A review of gasification technologies, Ren. Sus. Energy Rev., 2012, 16, 4753-4762.CrossrefGoogle Scholar

  • [31] Wei L., Pordesimo L.O., Igathinathane C., Batchelor W.D., Process engineering evaluation of ethanol production from wood through bioprocessing and chemical catalysis, Biomass Bioenerg., 2009, 33, 255-266.CrossrefGoogle Scholar

  • [32] He J., Zhang W., Techno-economic evaluation of thermochemical biomass-to-ethanol, Appl. Energy., 2011, 88, 1224-1232.CrossrefGoogle Scholar

  • [33] Hu J., Wang Y., Cao C., Elliott D.C., Stevens D.J., White J.F., Conversion of biomass-derived syngas to alcohols and C2 oxygenates using supported Rh catalysts in a microchannel reactor, Catalysis Today, 2007, 120, 90-95.CrossrefGoogle Scholar

  • [34] Wei L., Thomasson J.A., Bricka R.M., Batchelor W.D., Columbus E.P., Wooten J., Experimental study of a downdraft gasifier, Paper No. 066029. St. Joseph, MI: ASAE, 2007.Google Scholar

  • [35] Rao M.S., Singh S.P., Sodha M.S., Dubey A.K., Shyam M., Stoichiometric, mass, energy and energy balance analysis of countercurrent fixed-bed gasification of post-consumer residues, Biomass Bioenerg., 2004, 27, 155-71.CrossrefGoogle Scholar

  • [36] Eriksson G., Kjellstro¨m B., Lundqvist B., Paulrud S., Combustion of wood hydrolysis residue in a 150 kW powder burner, Fuel, 2004, 83, 1635-41. CrossrefGoogle Scholar

  • [37] Datar R.P., Shenkman R.M., Cateni B.G., Huhnke R.L., Lewis R.S., Fermentation of biomass-generated producer gas to ethanol, Biotechnol. Bioeng., 2004, 86, 587-594.CrossrefGoogle Scholar

  • [38] Clausen E.C., Gaddy J.L., Ethanol from biomass by gasification/fermentation, 1993, web.anl.gov/PCS/acsfuel/ preprint%20archive/Files/38_3_CHICAGO_08.Google Scholar

  • [39] Carpenter D.L., Bain R.L., Davis R.E., Dutta A., Feik C.J., Gaston K.R., et al., Pilot-Scale Gasification of Corn Stover, Switchgrass, Wheat Straw, and Wood: 1. Parametric study and comparison with literature, Ind. Engg. Chem. Res., 2010, 49, 1859-1871.Google Scholar

  • [40] Kumar, A., Biomass thermochemical gasification: Experimental studies and modeling. PhD Thesis (unpublished), The University of Nebraska, USA, 2009.Google Scholar

  • [41] Acharya B., Dutta A., Basu P., Chemical-looping gasification of biomass for hydrogen-enriched gas production with inprocess carbon dioxide capture, Energy Fuels, 2009, 23, 5077-5083.CrossrefGoogle Scholar

  • [42] Calvo L.F., Gil M.V., Otero M., Morán A., García A.I., Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems, Bioresour. Technol., 2012, 109, 206-214.CrossrefGoogle Scholar

  • [43] Passandideh-Fard M., Vaezi M., Moghiman M., On a numerical modle for gasification of biomass materials. The 7th High Temperature Air Combustion and Gasification International Symposium, (13-16 January 2008, Phuket, Thailand), 2008.Google Scholar

  • [44] Spivey J.J., Egbebi A., Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas, Chem. Soc. Rev., 2007, 36, 1514-1528.CrossrefGoogle Scholar

  • [45] Gonzalez R., Daystar J., Jett M., Treasure T., Jameel H., Venditti R., et al., Economics of cellulosic ethanol production in a thermochemical pathway for softwood, hardwood, corn stover and switchgrass, Fuel Process Technol., 2012, 94, 113-122.CrossrefGoogle Scholar

  • [46] Munasinghe P.C., Khanal, S.K., Biomass-derived syngas fermentation into biofuels: Opportunities and challenges, Bioresour. Technol., 2010, 101, 5013-5022.CrossrefGoogle Scholar

  • [47] Damartzis T., Zabaniotou A., Thermochemical conversion of biomass to second generation biofuels through integrated process design-A review, Renew, Sustain. Energy Rev., 2011, 15, 366-378.CrossrefGoogle Scholar

  • [48] Mohammed, M.A.A., Salmiaton, A., Wan Azlina, W.A.K.G., Mohammad Amran, M.S., Fakhru’l-Razi, A., Taufiq-Yap, Y.H., Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia, Ren. Sus. Energy Rev., 2011, 15, 1258-1270.CrossrefGoogle Scholar

  • [49] Bredwell M.D., Srivastava P., Worden R.M., Reactor design issues for synthesis-gas fermentations, Biotechnol. Prog., 1999, 15, 834-844.CrossrefGoogle Scholar

  • [50] Kundiyana D.K., Huhnke R.L., Wilkins M.R., Syngas fermentation in a 100-L pilot scale fermentor: Design and process considerations, J. Biosci. Bioeng., 2010, 109, 492-498.Google Scholar

  • [51] Younesi H., Najafpour G., Mohamed A.R., Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii, Biochem. Engg. J., 2005, 27, 110-119.Google Scholar

  • [52] Hurst K.M., Lewis R.S., Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation, Biocheml. Eng. J., 2005, 48, 159-165.Google Scholar

  • [53] BRI energy bioenergy process-technology summary, BRI Energy Inc., 2008, http://www.brienergy.com/.Google Scholar

  • [54] Heiskanen H., Virkajarvi I., Viikari L., The effects of syngas composition on the growth and product formation of Butyribacterium methylotrophicum, Enzy. Microb. Technol., 2007, 41, 362-367.CrossrefGoogle Scholar

  • [55] Rajagopalan S., Datar R.P., Lewis R.S., Formation of ethanol from carbon monoxide via a new microbial catalyst, Biomass Bioenerg., 2002, 23, 487-493.CrossrefGoogle Scholar

  • [56] Worden R.M., Bredwell M.D., Grethlein A.J., Fuels and chemicals from biomass. ACS Symposium Series No. 666, 1997, Washington, DC, 320-336.Google Scholar

  • [57] Mu D., Seager T., Rao P.S., Zhao F., Comparative life cycle assessment of lignocellulosic ethanol production: Biochemical versus thermochemical conversion, Environ. Manag., 2010, 46, 565-578.CrossrefGoogle Scholar

  • [58] Grossmann I.E., Martín M., Energy and water optimization in biofuel plants, Chinese J. Cheml. Eng., 2010, 18, 914-922.Google Scholar

  • [59] Martín M., Grossmann I.E., Energy optimization of bioethanol production via gasification of switchgrass, AIChE Journal, 2011, 57, 3408-3428.CrossrefGoogle Scholar

  • [60] Čuček L., Kravanja Z., Sustainable LCA-based MINLP synthesis of bioethanol processes, Comput. Aided Chem. Eng., 2010, 27, 1889-1894.Google Scholar

  • [61] Hsu, D.D., Inman, D., Heath, G.A., Wolfrum, E.J., Mann, M.K., Aden, A., Life cycle environmental impacts of selected US ethanol production and use pathways in 2022, Environ, Sci, Technol., 2010, 44, 5289-5297.CrossrefGoogle Scholar

  • [62] Hsu, D.D., Life cycle assessment of gasoline and diesel produced via fast pyrolysis and hydroprocessing, Biomass Bioenerg., 2012, 45, 41-47.CrossrefGoogle Scholar

  • [63] Cherubini F., Jungmeier G., LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass, Int. J. Life Cycl. Assess., 2010, 15, 53-66.Google Scholar

  • [64] Kim S., Dale B.E., Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel, Biomass Bioenerg., 2005, 29, 426-439.CrossrefGoogle Scholar

  • [65] Jungmeier G., Lingitz A., Spitzer J., Hofbauer H., Fürnsinn S., Wood to biofuels: Feasibility study for a biofuel plant in the Austrian province of Styria, In: Proceedings of the 15th European biomass conference and exhibition- from research to market deployment (7 - 11 May, Berlin, Germany), 2007.Google Scholar

  • [66] Wu M., Wang M., Huo H., Fuel-cycle assessment of selected bioethanol production pathways in the United States, Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, USA, 2006.Google Scholar

  • [67] Farrell A.E., Plevin R.J., Turner B.T., Jones A.D., O’Hare M., Kammen D., Ethanol can contribute to energy and environmental goals, Sci., 2006, 311, 506-508. CrossrefGoogle Scholar

  • [68] Zhang Y., Rethinking thermochemical conversion of biomass into biofuel, Resource, 2008, 15, 6 & 27.Google Scholar

  • [69] Tonini D., Astrup T., LCA of biomass-based energy systems: A case study for Denmark. Appl. Energy, 2012, 99, 234-246.CrossrefGoogle Scholar

  • [70] Galik C.S., Abt R.C., The effect of assessment scale and metric selection on the greenhouse gas benefits of woody biomass, Biomass Bioenerg., 2012, 44, 1-7.CrossrefGoogle Scholar

  • [71] Roy P., Shimizu N., Okadome H., Shiina T., Kimura T., Life cycle of rice: Challenges and choices for Bangladesh, J. Food Eng., 2007, 79, 1250-1255.CrossrefGoogle Scholar

  • [72] Baldwin R.M., Magrini-Bair K.A., Nimlos M.R., Pepiot P., Donohoe S.B., Hensley J.E., Phillips S.D., Current research on thermochemical conversion of biomass at the National Renewable Energy Laboratory, Appl. Catalysis B: Environ., 2012, 320- 329.CrossrefGoogle Scholar

  • [73] Gerber L, Gassner M, Maréchal F (2011) Systematic integration of LCA in process systems design: Application to combined fuel and electricity production from lignocellulosic biomass, Comput. Chem. Eng., 35: 1265-1280.CrossrefGoogle Scholar

  • [74] Williams E.D., Weber C.L., Hawkins T.R., Hybrid framework for managing uncertainty in life cycle inventories, J. Ind. Ecol., 2009, 13, 928-944.CrossrefGoogle Scholar

  • [75] Nechodom M., Schuetzle D., Ganz D., Cooper J., Sustainable forests, renewable energy, and the environment, Environ. Sci. Technol., 2008, 42, 13-18.CrossrefGoogle Scholar

  • [76] Tock L., Gassner M., Maréchal F., Thermochemical production liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis, Biomass Bioenerg., 2010, 34, 1838-1854.CrossrefGoogle Scholar

  • [77] Gassner M., Maréchal F., Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass, Biomass Bioenerg., 2009, 33, 1587-1604.CrossrefGoogle Scholar

  • [78] Haro P., Ollero P., Perales A.L.V., Valle C.R., Technoeconomic assessment of lignocellulosic ethanol producti on via DME (dimethyl ether) hydrocarbonylation, Energy, 2012, 44, 891-901.CrossrefGoogle Scholar

  • [79] Phillips S.D., Technoeconomic analysis of a lignocellulosic biomass indirect gasification process to make ethanol via mixed alcohols synthesis, Ind. Eng. Chem. Res., 2007, 46, 8887-8897.CrossrefGoogle Scholar

  • [80] Dutta A., Bain R.L., Biddy M.J., Techno-economics of the production of mixed alcohols from lignocellulosic biomass via high-temperature gasification. Environ. Prog. Sus. Energy, 2010, 29, 163-174.CrossrefGoogle Scholar

  • [81] Perales A.L.V., Valle C.R., Ollero P., Gómez-Barea, A., Technoeconomic assessment of ethanol production via thermochemical conversion of biomass by entrained flow gasification, Energy, 2011, 36, 4097-4108.CrossrefGoogle Scholar

  • [82] Foust T.D., Aden A., Dutta A., Phillips S., An economic and environmental comparison of a biochemical and thermochemical lignocellulosic ethanol conversion processes, Cellulose, 2009, 16, 547-565.CrossrefGoogle Scholar

  • [83] Tyndall J.C., Berg E.J., Colletti J.P., Corn stover as a biofuel feedstock in Iowa’s bio-economy: An Iowa farmer survey, Biomass Bioenerg., 2010, 35, 1485-1495. Google Scholar

  • [84] Uihlein A., Schebek L., Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment, Biomass Bioenerg., 2009, 33, 793-802.CrossrefGoogle Scholar

  • [85] Sukumaran R.K., Surender V.J., Sindhu R., Binod P., Janu K.U., Sajna K.V., et al., Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability, Bioresour. Technol., 2010, 101, 4826-4833.CrossrefGoogle Scholar

  • [86] Cherubini F., Ulgiati S., Crop residues as raw materials for biorefinery systems - a LCA case study. Appl. Energy, 2010, 87, 47-57.CrossrefGoogle Scholar

  • [87] Singh A., Pant D., Korres N.E., Nizami A.S., Prasad S., Murphy J.D., Key issues in LC assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives, Bioresour. Technol., 2010, 101, 5003-5012.CrossrefGoogle Scholar

  • [88] Cowie A.L., Smith P., Johnson D., Does soil carbon loss in biomass production syste ms negate the greenhouse benefits of bioenergy?, Mitigation Adapt. Strat. Global Change, 2006, 11, 979-1002.Google Scholar

  • [89] Swana J., Yang Y., Behnam M., Thompson R., An analysis of net energy production and feedstock availability for biobutanol and bioethanol, Bioresour. Technol., 2011, 102, 2112-2117.CrossrefGoogle Scholar

  • [90] Fargione J., Hill J., Tilman D., Polasky S., Hawthorne P., Land clearing and the biofuel carbon debt, Sci., 2008, 319, 1235-1238.Google Scholar

  • [91] Searchinger T., Heimlich R., Houghton R.A., Dong F., Elobeid A., Fabiosa J., et al., Use of US croplands for biofuels increases greenhouse gases through emissions from landuse change, Sci., 2008, 319, 1238-1240.Google Scholar

  • [92] Wyman C.E., What is (and is not) vital to advancing cellulosic ethanol, Trends Biotechnol., 2007, 25, 153-157.CrossrefGoogle Scholar

  • [93] Grigal D.F., Berguson W.E., Soil carbon changes associate d with short-rotation systems. Biomass Bioenerg., 1998, 14, 371-378.CrossrefGoogle Scholar

  • [94] Heller M.C., Keoleian G.A., Volk T.A., Life cycle assessment of a willow bioenergy cropping system, Biomass Bioenerg., 2003, 25, 147-165.CrossrefGoogle Scholar

  • [95] Hansen E.M., Christensen B.T., Jensen L.S., Kristensen K., Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13C abundance, Biomass Bioenerg., 2004, 26, 97-105.CrossrefGoogle Scholar

  • [96] Skinner R.H., Zegada-Lizarazu W., Schmidt J.P., Environmental impacts of switchgrass management for bioenergy production, Switch Grass: A Valuable Biomass Crop for Energy. Edited by Andrea Monti. Springer, London, UK, 2006.Google Scholar

  • [97] George J.,T., Iacovos A.V., Feasibility analysis of ternary feed mixtures of methane with oxygen, steam and carbon dioxide for the production of methanol synthesis gas, Ind. J. Chem. Res., 1998, 37, 1410-1421.Google Scholar

  • [98] UN Energy, Sustainable bioenergy: A framework for decision makers, 2007, ftp://ftp.fao.org/docrep/fao/010/a1094e/ a1094e00.pdf.Google Scholar

  • [99] Tilman D., Socolow R., Foley J.A., Hill J., Larson E., Lynd L., et al., Beneficial biofuels the food, energy, and environment trilemma, Sci., 2009, 325, 270-271. Google Scholar

  • [100] Piccolo C., Bezzo F., A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass Bioenerg., 2009, 33, 478-491.CrossrefGoogle Scholar

  • [101] Spath P.L., Dayton D.C., Preliminary screening-technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas (No. NREL/TP-510-34929), National Renewable Energy Lab Golden Co., 2003. Google Scholar

About the article

Received: 2013-05-09

Accepted: 2013-06-29

Published Online: 2013-07-29


Citation Information: Bioethanol, Volume 1, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.2478/bioeth-2013-0001.

Export Citation

© 2013. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in