Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Ed. by Ruiz, Héctor

1 Issue per year

Open Access
See all formats and pricing
More options …

Immobilization of Scheffersomyces stipitis cells with calcium alginate beads: A sustainable method for hemicellulosic ethanol production from sugarcane bagasse hydrolysate

Thais S. S. Milessi
  • Corresponding author
  • Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena- 12.602.810, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anuj K. Chandel / Felipe A. F. Antunes
  • Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena- 12.602.810, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Silvio S. da Silva
Published Online: 2013-07-29 | DOI: https://doi.org/10.2478/bioeth-2013-0002


Lignocellulosic ethanol has shown promising alternative to gasoline however expensive and cumbersome bioprocessing limits the commercialization of biofuels. The major impediment toward the economic ethanol production is the bioconversion of sugars into ethanol via microbial fermentation. Application of immobilized cells in fermentation of hemicellulosic hydrolysate could minimize the ethanol production cost. This study evaluated the conditions for cell immobilization for the yeast Scheffersomyces stipitis NRRL Y-7124 by the method of entrapment in calcium alginate gel. A full factorial design (23) was designed to investigate the effect of three process variables i.e. sodium alginate concentration (1.0, 1.5 and 2.0%), calcium chloride concentration (0.1, 0.15 and 0.2 M) and conditioning time (12, 18 and 24 h). Twelve numbers of experiments were performed with central points in quadruplicates. The range of ethanol production in all experiments was observed from 4.88 g/L (Yp/s, 0.16 g/g) to 9.9 g/L ethanol (Yp/s, 0.29 g/g). Statistical analysis revealed that immobilization conditions (2.0% sodium alginate concentration, 0.1M calcium chloride concentration and 12 h conditioning time) were responsible for high stability of immobilized cells which in-turn enabled the maximum ethanol production (7.2 g/L, Yp/s, 0.26 g/g) from hemicellulosic hydrolysate of sugarcane bagasse

Keywords: Cell immobilization; Bioethanol; Scheffersomyces stipitis; Sugarcane bagasse hydrolysate; Dilute acid hydrolysis


  • [1] Doherty W.O.S., Mousavioun P., Fellows C.M., Value-adding to cellulosic ethanol: Lignin polymers. Ind. Crop. Prod., 2011, 33, 259-276.Web of ScienceGoogle Scholar

  • [2] Goldemberg, J., Ethanol for a sustainable energy future, Sci., 2007, 315, 808-810.Google Scholar

  • [3] Park J.I., Steen E.J., Burd H., Evans S.S., Redding-Johnson A.M., Batth T., et al., A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels. PLOS ONE, 2012, 7, 5, DOI:10.1371/journal.pone.0037010.CrossrefGoogle Scholar

  • [4] Chandel A.K., Singh O.V., Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of “Biofuel”. Appl. Microbiol. Biotechnol., 2011, 89, 1289-1303.Web of ScienceGoogle Scholar

  • [5] Chandel A.K., Silva S.S., Carvalho W., Singh O.V., Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products., J. Chem. Technol. Biotechnol., 2012, 87, 1-20.Web of ScienceGoogle Scholar

  • [6] Betancur G.J.V., Pereira Jr. N., Sugarcane bagasse as feedstock for second generation etanol production. Part I: Diluted acid pretreatment optimization., Eletron. J. Biotechn., 2010, 13, DOI: 10.2225/vol13-issue3-fulltext-3.CrossrefGoogle Scholar

  • [7] Rezende C.A., Lima M.A., Maziero P., Azevedo E.R., Garcia W., Polikarpov I., Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility., Biotechnol Biofuels, 2011, 4, 54.Web of ScienceGoogle Scholar

  • [8] Silva V.F.N., Arruda P.V., Felipe M.G.A., Gonçalves A.R., Rocha G.J.M., Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of bagasse pretreated by hydrothermal processing., J. Ind. Microbiol. Biotechnol., 2011, 38, 809-817.CrossrefGoogle Scholar

  • [9] Canilha L., Chandel A.K., Milessi T.S.S., Antunes, F.A.F., Freitas W.L., Felipe M.G.A., et al., Bioconversion of Sugarcane Biomass into Ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation., J. Biomed. Biotechnol., 2012, doi: 10.1155/2012/989572.CrossrefWeb of ScienceGoogle Scholar

  • [10] Almeida J.R.M., Modig T., Petersson A., Hähn-Hägerdal B., Lidén G., Gorwa-grauslund M.F., Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae., J. Chem. Technol. Biotechnol., 2007, 82, 340-349.Web of ScienceGoogle Scholar

  • [11] Silva D.D.V., Felipe, M.G.A., Mancilha, I.M., Silva, S.S., Evaluation of inoculum of Candida guilliermondii grown in presence of glucose on xylose reductase and xylitol dehydrogenase activities and xylitol production during batch fermentation of sugarcane bagasse hydrolysate., Appl. Biochem. Biotechnol., 2005, 121-124, 427-437.Google Scholar

  • [12] Milessi T.S.S., Antunes F.A.F., Chandel A.K., Silva S.S., Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysates., 3 Biotech, 2012, (in press) DOI: 10.1007/ s13205-012-0098-9.CrossrefGoogle Scholar

  • [13] Canilha L., Carvalho W., Felipe M.G.A., Silva J.B.A., Giulietti M., Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl. Biochem. Biotechnol., 2010, 161, 84-92.Web of ScienceGoogle Scholar

  • [14] Cadete R.M., Melo M.A., Dussán K.J., Rodrigues R.C.L.B., Silva S.S., Zilli J.E., et al., Diversity and Physiological Characterization of D-Xylose-Fermenting yeasts Isolated from the Brazilian Amazonian Forest., PLOS ONE, 2012, 7, e43135.Google Scholar

  • [15] Agbogbo F.K., Coward-Kelly G., Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis, Biotechnol. Lett., 2008, 30, 1515-1524.CrossrefGoogle Scholar

  • [16] Kurtzman C.P., Suzuki M., Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces and Scheffersomyces., Mycoscience, 2010, 51, 2-14.CrossrefWeb of ScienceGoogle Scholar

  • [17] Santos D.T., Sarrouh B.F., Rivaldi J.D., Converti A., Silva S.S., Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production., J. Food Eng., 2008, 86, 542-548.Web of ScienceGoogle Scholar

  • [18] Ogbonna J.C., Tomiyama S., Liu Y.C., Tanka H., Effcient production of ethanol by cells immobilized in loofa (Luffa cylindrica) sponge., J. Fer. Bioeng., 1997, 84, 271-274.Google Scholar

  • [19] Carvalho W., Canilha L., Silva S.S., Semi-continuous xyloseto- xylitol bioconversion by Ca-alginate entrapped yeast cells in a stirred tank reactor. Bioprocess Biosyst. Eng., 2008, 31, 493-498.Web of ScienceGoogle Scholar

  • [20] Chandel A.K., Narasu M.L., Chandrasekhar G., Manikeyam A., Rao L.V., Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3., Bioresour. Technol., 2009, 100, 2404-2410. Web of ScienceGoogle Scholar

  • [21] Zhao J., Xia L., Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem. Eng. J., 2010, 49, 28-32.CrossrefWeb of ScienceGoogle Scholar

  • [22] Alves L.A., Felipe M.G.A., Silva J.B.A., Silva S.S., Prata A.M.R., Pretreatment of sugarcane bagasse hemicellulose hydrolisate for xylitol production by Candida guilliermondii., Appl. Biochem. Biotechnol., 1998, 70/72, 89-98.Web of ScienceGoogle Scholar

  • [23] Ramakrishna S.V., Prakasham R.S., Microbial fermentations with immobilized cells. Curr. Sci., 1999, 77, 1.Google Scholar

  • [24] Carvalho W., Silva S.S., Converti A., Vitolo M.V., Felipe M.G.A., Roberto I.C., et al., Use of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate: Cell Imobilizaition Conditions. Appl. Biochem. Biotechnol., 2002, 98-100, 489- 496.Google Scholar

  • [25] Kourkoutas Y., Bekatorou A., Banat I.M., Marchant R., Koutinas A.A., Immobilization technologies and support materials suitable in alcohol beverages production: a review., Food Microbiol, 2004, 21, 377-397.CrossrefGoogle Scholar

  • [26] Lee J.S., Cha D.S. Park H.J., Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles., J. Agric. Food. Chem., 2004, 52, 7300-7305.Google Scholar

  • [27] Domínguez J.M., Cruz J.M., Roca E., Domínguez H., Parajó J.C., Xylitol production from wood hydrolyzates by entrapped Debaryomyces hansenii and Candida guilliermondii cells., Appl. Biochem. Biotechnol., 1999, 81, 119-130.Google Scholar

  • [28] Najafpour G., Younesi H., Ismail K.S.K., Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae., Bioresour. Technol., 2004, 92, 251-260.Google Scholar

  • [29] Nuanpeng S., Laopaiboon L., Srinophakun P., Klanrit P., Jaisil P., Laopaiboon P., Ethanol production from sweet sorghum juice under very high gravity conditions: Batch, repeated batch and scale up fermentation., Electron. J. Biotechn., 2011, doi: 10.2225/vol14-issue1-fulltext-2.Web of ScienceCrossrefGoogle Scholar

  • [30] Scordia D., Cosentino S.L., Lee J.W., Jeffries T.W., Bioconversion of giant reed (Arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054., Biomass Bioenerg., 2012, 39, 296-305.Web of ScienceGoogle Scholar

  • [31] Singh A., Sharma P., Saran A.K., Singh N., Bishnoi N.R., Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renew. Energ., 2013, 50, 488-493.CrossrefWeb of ScienceGoogle Scholar

  • [32] Abbi M., Kuhad R.C., Singh A., Bioconversion of pentose sugars to ethanol by free and immobilized cells of Candida shehatae (NCL-3501): fermentation behavior. Process Biochem., 1996, 31, 555-560.Google Scholar

  • [33] De Bari I., De Canio P., Cuna D., Liuzzi F., Capece A., Patrizia R., Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and cocultures with Saccharomyces cerevisiae., New Biotechnol., 2013, http://dx.doi.org/10.1016/j.nbt.2013.02.003. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2013-05-03

Accepted: 2013-07-09

Published Online: 2013-07-29

Citation Information: Bioethanol, Volume 1, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.2478/bioeth-2013-0002.

Export Citation

© 2013. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

F.A.F. Antunes, A.K. Chandel, L.P. Brumano, R. Terán Hilares, G.F.D. Peres, L.E.S. Ayabe, V.S. Sorato, J.R. Santos, J.C. Santos, and S.S. Da Silva
Renewable Energy, 2017
Thais S S Milessi, Felipe A F Antunes, Anuj K Chandel, and Silvio S da Silva
Bioengineered, 2015, Volume 6, Number 1, Page 26

Comments (0)

Please log in or register to comment.
Log in