Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Ed. by Ruiz, Héctor

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Technology selection for bioethanol production: supply chain perspective

Mingyen Yu
  • Corresponding author
  • Department of Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK; Tel.: +44 (0)1483 689474; fax: +44 (0)1483 686581
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Seyed Ali Hosseini / Athanasios Korokas
  • Department of Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-12 | DOI: https://doi.org/10.2478/bioeth-2014-0001


There is a large body of literatures regarding the choice and optimization of different processes for bioethanol and bio-commodities production. However, most of these works are focusing either on single unit of operation or single conversion facility. As these operations are heavily related, it is essential to consider all of them at the supply chain level. In this work, an optimization model for biomass to ethanol supply chain is developed, which takes into account economics and environments as primary objectives. The developed model is used to compare the efficiency of several pre-treatment methods: Dilute-Sulphuric acid, Organosolv and Soaking in Ethanol and Aqueous Ammonia pre-treatment methods, together with Thermochemical conversion in Minnesota, USA. It can be concluded that currently, Dilute-Sulphuric acid pretreatment is still the most profitable method for ethanol production. However, Organosolv pre-treatment process is the most promising technology accessed since it captures most of the lignin present in the feedstock, which is a significant source of CO2 emission if sent for combustion. We believe that the future of technology selection for biomass conversion should be focusing on the holistic view of the entire supply chain, and our approach represents a dependable way to obtain the required results

Keywords: Supply Chain Management; Economics; Optimization; Biomass Technology Selection; Renewable Energy


  • [1] Black M.J., Whittaker C., Hosseini S.A., Diaz-Chavez R., Woods J., Murphy R.J., Life cycle assessment and sustainability methodologies for assessing industrial crops., processes and end products, Ind. Crop. Prod., 2011, 34, 1332-1339.CrossrefGoogle Scholar

  • [2] EPA (Environmental Protection Agency US), EPA and NHTSA Adopt First-Ever Program to Reduce Greenhouse Gas Emissions and Improve Fuel Efficiency of Medium- and Heavy- Duty Vehicles, Office of Transportation and Air Quality, Regulatory Announcement, 2011.Google Scholar

  • [3] Fonseca M.B., Burrell A., Gay H., Henseler M., Kavallari A., M’Barek R. et al., Impacts of the EU biofuel target on agricultural markets and land use: a comparative modelling assessment, JRC Scientific and Technical Reports. 2010.Google Scholar

  • [4] Beamon B., Supply chain design and analysis: models and methods, Int. J. Prod. Econ., 1998, 55, 3, 281-294.CrossrefGoogle Scholar

  • [5] Zhang D., A network economic model for supply chain versus supply chain competition, Omega., 2006, 283-295.Google Scholar

  • [6] Nagurney A., Supply chain network economics: Dynamics of prices, flows and profits, Edward Elgar Publishing, Cheltenham, England, 2006.Google Scholar

  • [7] Nagurney A., A system-optimization prospective for supply chain network integration: The horizontal merger case, Transport. Res. E-Log., 2009, 45, 1-15.CrossrefGoogle Scholar

  • [8] You F., Grossman I.E., Optimal design and operational planning of responsive process supply Chain, In: Pistikopoulos, E.N., Georgiadis, M.C., Dua, V., Papageorgiou, L.G. (Eds.), Process systems engineering: supply chain optimization, Volume 3, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007.Google Scholar

  • [9] Caputo A.C., Palumbo, M., Pelagagge, P. M., Scacchia, F., Economic of biomas energy utilization in combustion and gasification plants: effects of logistic variables, Biomass. Bioenerg., 2005, 28, 35-51.CrossrefGoogle Scholar

  • [10] Kumaran S.D, Ong S.K., Tan B.H.R., Nee A.Y.C., Environmental life cycle cost analysis of products, Environmen. Manageme. Health., 2001, 2, 260-276.Google Scholar

  • [11] Dunnett A., Adjiman, C., Shah N., Biomass to heat supply chains: application of process optimization, Process Saf. Environ. Prot., 2007, 85, 5, 419-429.CrossrefGoogle Scholar

  • [12] Franceschin G., Zamboni A., Bezzo F., Bertucco A., Ethanol from corn: a technical and economical assessment based on different scenarios, Chem. Eng. Res. Des., 2008, 86, 488-498.CrossrefGoogle Scholar

  • [13] Giarola S., Zamboni A., Bezzo F., Supply chain design and capacity planning: from first to second generation biofuel systems. Chem. Eng. Trans., 2011, 24, 253-258.Google Scholar

  • [14] Hosseini, S. A., Abedpour, A., Yu, M., Multi-scale process and supply chain modelling: from feedstock to process and products, In: L.A. Karimi and R. Srinivasan (Eds.), Proceedings of International Symposium on Process Systems Engineering (15-19 July 2012, Singapore, Singapore), 2012, 1, 1-5.Google Scholar

  • [15] Hagelaar G. and van der Vorst J., Environmental supply chain management: using life cycle assessment to structure supply chains. Int. Food Agribus. Man., 2001, 4, 399-412.Google Scholar

  • [16] United States Environmental Protection Agency. An Introduction to Environmental Accounting as a Business management Tool: Key Concepts and Terms, Washington D.C, 1995. http://www.epa.gov/ppic/pubs/busmgt.pdf.Google Scholar

  • [17] Fabrycky W.J, Blanchard B.S, Life-cycle cost and economic analysis, Prentice Hall, 1991.Google Scholar

  • [18] Dahlén P., Bolmsj. G.S., Life-cycle cost analysis of the labor factor, Int. J. Production Economics, 1996, 46/47:459-467.Google Scholar

  • [19] Woodward D.G., Life cycle costing - theory, information acquisition and application, Int. J. Project Manage., 1997, 15, 335-344.Google Scholar

  • [20] Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M. et al., Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour. Technol., 2005, 96, 673-686.CrossrefPubMedGoogle Scholar

  • [21] Mooney C.A., Mansfield S.D., Touhy M.G., Saddler J.N., The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwood, Bioresour. Technol., 1998, 64, 113-119.Google Scholar

  • [22] Zhao X., Cheng K., Liu D., Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis, Appl. Microbiol. Biotechnol., 2009, 82, 815-827.PubMedCrossrefGoogle Scholar

  • [23] Kim H., Nghiem N.P., Hicks K.B., Pretreatment and fractionation of stover by soaking in ethanol and aqueous ammonia, Appl. Biochem. Biotechnol., 2009, 153, 171-179.Google Scholar

  • [24] NREL (National Renewable Energy Laboratory US), Research Advances-Cellulosic Ethanol, 2007. http://www.nrel.gov/ biomass/pdfs/40742.pdf.Google Scholar

  • [25] Foust T.D, Aden A., Dutta A., Phillips S., An economic and environmental comparison of a Biochemical and a Thermochemical lignocellulosic ethanol conversion processes, Cellulose, 2009, 16, 547-565.Google Scholar

  • [26] Hugo A., Pistikopoulos E.N., Environmentally conscious long-range planning and design of supply chain networks, J.Google Scholar

  • Cleaner Prod., 2005, 13, 1471-1491.Google Scholar

  • [27] Luo L., Voet E.V.der., Huppes G., Haes H.A.U., Allocation issues in LCA methodology: a case study of stover-based fuel ethanol. Intern. J. Life Cycle Assess., 2009, 14, 529-539.Google Scholar

  • [28] Schell D.J., Farmer J., Newman M., McMillan J.D., Dilutesulfuric acid pretreatment of stover in pilot-scale reactor, Appl. Biochem. Biotechnol., 2003, 105-108, 69-85.Google Scholar

  • [29] Kazi F.K., Fortman J.A, Anex R.P., Hsu D.D., Aden A., Dutta A. et al., Techno-economic comparison of process technologies for biochemical ethanol production from stover, Fuel, 2010, 89, s20-s28.CrossrefGoogle Scholar

  • [30] Chum H.L., Douglas L.J., Feinberg D.A., Schroeder H.A., Evaluation of pretreatments of biomass for enzymatic hydrolysis of cellulose, Solar Energy Research Institute, 1985. http://www.nrel.gov/docs/legosti/old/2183.pdf.Google Scholar

  • [31] Brudecki G., Cybulska I., Rosentrater K., Optimisation of clean fractionation process applied to switchgrass to produce pulp for enzymatic hydrolysis, Bioresour. Technol., 2013, 131, 101-112.Google Scholar

  • [32] Brudecki G., Cybulska I., Rosentrater K., Julson J., Optimisation of clean fractionation processing as a pre-treatment technology for prairie cordgrass, Bioresour. Technol., 2012, 107, 494-504.Google Scholar

  • [33] Cybulska I., Brudecki G., Hankerson B.R., Julson J.L, Lei H., Catalysed modified clean fractionation of switchgrass, Bioresour. Technol., 2013, 127, 92-99.CrossrefGoogle Scholar

  • [34] Cybulska I., Brudecki G., Rosentrater K., Lei H., Julson J.L., Catalysed modified clean fractionation of prairie cordgrass integrated with hydrothermal post-treatment, Biomass Bioenergy, 2012, 46, 389-401.Google Scholar

  • [35] Park N., Kim H.Y., Koo B.W., Yeo H., Choi I.G., Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida), Bioresour. Technol., 2010, 101, 18, 7056-7053.Google Scholar

  • [36] Humbird D., Davis R., Tao L., Kinchin C., Hsu D., Aden A., et al., Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. Dilute-acid pretreatment and enzymatic hydrolysis of stover. Technical Report, NREL, 2011. http://www.nrel.gov/docs/fy11osti/47764.pdf.Google Scholar

  • [37] theguardian, Corporation tax rates around the world. How much do companies pay?, OECB data summary for corporation tax rates, 2011, http://www.theguardian.com/news/ datablog/2011/feb/21/corporation-tax-rates-world.Google Scholar

  • [38] U.S. Department of Energy, Ethanol Infrastructure Grants and Loan Guarantees, U.S. Department of Agriculture, http://www. afdc.energy.gov/laws/law/US/9172.Google Scholar

  • [39] Hurt C., Tyner W., Doering O., Economics of Ethanol, BioEnergy.Google Scholar

  • Purdue University, 1-4, 2006, http://www.extension.purdue. edu/extmedia/ID/ID-339.pdf.Google Scholar

  • [40] Petrolia D. R., The economics of harvesting and transporting stover for conversion to fuel ethanol: A case study for Minnesota. Biomass Bioenergy, 2008, 32, 603-612.Google Scholar

  • [41] Karlen, D.L., Birrell, S.J., Johnson, J.M.F., Osborne, S.L., Schumacher, T.E., Varvel, G.E. et al., Corn grain, stover yield and nutrient removal validations at regional partnership sites, http://sungrant.tennessee.edu/NR/rdonlyres/5781889E-695B-4B95-8185-84096468CF51/3722/45Karlen_Doug_VO_edits. pdf.Google Scholar

  • [42] Thompson J., Tyner W., Stover for bioenergy production: Cost estimates and farmer supply response, Renewable Energy, Purdue University, 2011, http://www.extension.purdue.edu/ extmedia/EC/RE-3-W.pdf.Google Scholar

  • [43] Karlen D.L, Birell S.L., Hess R.J., A five-year assessment of stover harvest in central Iowa, USA. Soil Tillage Res., 2011, 115-116, 47-55.Google Scholar

  • [44] Kim S., Dale B.E., Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass Bioenergy, 2005, 29, 426-439.Google Scholar

  • [45] Taff S. and Nelson C., Subsidies Available for the Production of Biomass Fuels for a Rock-Tenn Facility. Rock-Tenn biomass Subsidies Report, The Green Institute, 2008.Google Scholar

  • [46] Sheehan J., Aden A., Paustian K., Killian K., Brenner J., Walsh M.et al. Energy and environmental aspects of Using stover for fuel ethanol. J. Ind. Ecol. 2004, 7, 117-146.Google Scholar

  • [47] Yan J., Energy Density of Natural Gas. The Physics Factbook, 2004, http://hypertextbook.com/facts/2004/JessicaYan.shtml.Google Scholar

  • [48] money.cnn.com, Price of natural gas, 2012, http://money.cnn. com/data/commodities/.Google Scholar

  • [49] coalspot.com, Price of coal, 2012, http://www.coalspot.com/.Google Scholar

  • [50] Murray J., US 2012 Carbon price to hit $13.70, BusinessGreen, 2009, http://www.businessgreen.com/bg/news/1800695/ us-2012-carbon-price-hit-usd1370.Google Scholar

  • [51] ethanolmarket.com, Price of ethanol for the 2/3/12, 2012, http://www.ethanolmarket.com/. Google Scholar

About the article

Received: 2013-05-16

Accepted: 2014-02-03

Published Online: 2014-07-12

Citation Information: Bioethanol, Volume 1, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.2478/bioeth-2014-0001.

Export Citation

© 2014 Mingyen Yu, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in