Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bioethanol

Ed. by Ruiz, Héctor

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-6788
See all formats and pricing
More options …

Bioconversion of degraded husked sorghum grains to ethanol

Muhammad Nasidi
  • Corresponding author
  • School of Science, Engineering & Technology, Abertay University, Bell street, Dundee, DD1 1HG, Scotland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reginald C. Agu
  • Corresponding author
  • The Scotch Whisky Research Institute, The Robertson Trust Building, Edinburgh, EH14 4AP, Scotland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yusuf Deeni
  • Corresponding author
  • School of Science, Engineering & Technology, Abertay University, Bell street, Dundee, DD1 1HG, Scotland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Idris Bala Giginyu
  • Corresponding author
  • National Institute for Horticultural Research (NIHORT), Bagauda, Kano, Nigeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Graeme Walker
  • Corresponding author
  • School of Science, Engineering & Technology, Abertay University, Bell street, Dundee, DD1 1HG, Scotland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-08-18 | DOI: https://doi.org/10.1515/bioeth-2015-0001

Abstract

Efficient starch saccharification is an essential step towards achieving improved ethanol yields by fermentation. Sorghum grains are important starch sources for bioconversion to ethanol. In the present study, disease degraded (spoilt) husked grains from Nigerian sorghum cultivars were obtained from field sites and subjected to bioprocessing to ethanol. The crude husked grains (comprising husks, spikelet, awn, rachis and pubescence materials) were hammer milled and each meal separately mashed with enzyme cocktails comprising amylase, glucanase and protease enzymes. The saccharified worts obtained were then fermented with the yeasts, Saccharomyces cerevisiae and Pichia stipitis (aka Scheffersomyces stipitis), without exogenous nutrient supplementation. Sugars liberated during mashing were determined and it was found that enzymatic hydrolysis of milled sorghum grains was effective in yielding favourable levels of fermentable sugars up to 70g sugar/100g substrate with one particular cultivar (KSV8). Ethanol and carbon dioxide production was measured from subsequent trial fermentations of the sorghum mash and it was found that S. cerevisiae produced ethanol levels equating to 420 L/t that compares very favourably with yields from wheat and barley. Our findings show that crude degraded sorghum grains represent favourable low-cost feedstocks for bioconversion to ethanol with reduced energy input and without additional costs for nutrient supplementation during fermentation. Consequently, our results suggest some economic benefits could be derived from spoilt or degraded sorghum grains.

Keywords: Husked sorghum grain; Starch composition; Mashing; Enzyme cocktails; Fermentation performance; Bioethanol

References

  • [1] Nasidi M., Akunna J., Deeni Y., Blackwood D., Walker G., Bioethanol in Nigeria: comparative analysis of sugarcane and sweet sorghum as feedstock sources, J. Energy Environ. Sci., 2010, 3, 1447-1457. CrossrefWeb of ScienceGoogle Scholar

  • [2] Kothari D.P., Singal K.C., Ranjan R., Renewable energy sources and emerging technologies, 2nd ed., PHI Learning, New Delhi, 2012. Google Scholar

  • [3] Walker G.M., Fuel alcohol: Current production and future challenges, J. Inst. Brew., 2011,1, 3–22. Google Scholar

  • [4] Nasidi M., Deeni Y., Agu R. Walker G., Fermentation of stalk juices from different Nigerian sorghum cultivars to ethanol, J. Bioethanol, 2013, 1, 20-27. Google Scholar

  • [5] Etuk E.B., Ifeduba A.V., Okata U.E., Chiaka I., Okoli, Ifeanyi C., Okeudo N.J., Esonu B.O., Udedibie A.B.I., Moreki, J.C., Nutrient composition and feeding value of sorghum for livestock and poultry: a review., J. Anim. Sci. Adv., 2012, 6, 510-524. Google Scholar

  • [6] United State Department of Agriculture, Nigeria food security update: Famine early warning systems network (FEWS.NET), USAID, 2009, www.fews.net/foodsecurityscale Google Scholar

  • [7] Ismaila U., Gana A.S., Tswanya N.M., Dogara, Cereals production in Nigeria: Problems, constraints and opportunities for betterment, Afri. J. Agric. Res., 2010, 5, 1341-1350. Google Scholar

  • [8] Agu R.C., Bringhurst T.A., Brosnan J.M., Production of grain whisky and ethanol from wheat, maize and other cereals, J. Inst. Brew., 2006, 4, 314-323. Google Scholar

  • [9] Showemimo F.A., Grain yield response and stability indices in sorghum (sorghum bicolor (L.) Moench), J. Agric. Biol., 2007, 2, 68-73. Google Scholar

  • [10] Ijasan B., Goodfellow V., Bryce J.H., Bringhurst T.A., Brosnan J.M., Jack F.R., Agu R.C., Quality Assessment of a Sorghum Variety Malted Commercially under Tropical Conditions and Controlled Tropical Temperatures in the Laboratory, J. Inst. Brew., 2011, 2, 206–211. Web of ScienceGoogle Scholar

  • [11] Ng’uni D., Geleta M., Johansson E., Fatih M., Bryngelsson T., Characterization of the Southern African sorghum varieties for mineral contents: Prospects for breeding for grain mineral dense lines, African Journal of Food Science, 2011, 7, 436-445. Google Scholar

  • [12] Yago J.I., Roh J., Bae S., Yoon Y., Kim H., Nam M., The Effect of Seed-borne mycoflora from sorghum and foxtail millet seeds on germination and disease transmission, Journal of Mycobiology, 2011, 3, 206-218. Google Scholar

  • [13] Panchal V.H., Dhale D.A., Isolation of seed-borne fungi of sorghum (Sorghum vulgarepers.), Journal of Phytology, 2011, 12, 45-48. Google Scholar

  • [14] Ginovart M., Prats C., Portell X., Silbert M., Analysis of the effect of inoculum characteristics on the first stages of a growing yeast population in beer fermentations by means of an individual-based model, J. Industr. Microbiol. Biotech., 2011, 38, 153-165. Google Scholar

  • [15] Youssef A. M., Extractability, fractionation and nutritional value of low and high tannin sorghum proteins, J. Food Chemi., 1998, 63, 325-329. Google Scholar

  • [16] de Mesa-Stonestreet N.J., Alavi S., Bean S.R., Sorghum proteins: The concentration, isolation, modification, and food applications of kafirins, J. Food Science, 2010, 5, R90-R104. Web of ScienceGoogle Scholar

  • [17] Aldaeus F., Sjoholm E., Round Robins of lignin samples Part 1: Lignin content, Innventia Report No.: IR 108, 2011, http:// ir108_costfp0901_pr1lignincontent.pdf Google Scholar

  • [18] Zhang G., Hamaker B.R., Low a-amylase starch digestibility of cooked sorghum flours and the effect of protein, J. Cereal Chemistry, 1998, 75, 710-713. Google Scholar

  • [19] Osman A., Coverdale S.M., Ferguson R., Watson K., Fox G., Hamilton E., de Jersey A., What causes low barley proteins modification and low wort free amino nitrogen - Proteins or Proteinases, In: Proceedings of the 10th Australian barley technical symposium (16-20 September 2001, Canberra, ACT., Australia), Canberra, 2001, T4. Google Scholar

  • [20] Goldammer T., The Brewers’ Handbook: the Complete Book to Brewing Beer, Apex, New York, 2008 Google Scholar

  • [21] Van Hung P., Maeda T., Morita N., Waxy and high-amylose wheat starches and flours characteristics, functionality and application, Trends in Food Science & Technology, 2006, 17, 448–456. Google Scholar

  • [22] Lyumugabe F., Gros J., Nzungize J., Bajyana E., Thonart P., Characteristics of African traditional beers brewed with sorghum malt: a review. Biotechnology, Agronomy, Society and Environment, 2012, 4, 509-530. Google Scholar

  • [23] Wong J.H., Lau T., Cai N., Singh J., Pedersen J.F., Vensel W.H., Hurkman W.J., Wilson J.D., Lemaux P.G., Buchanan B.B., Digestibility of protein and starch from sorghum (Sorghum bicolor) is linked to biochemical and structural features of grain endosperm, J. Cereal Science, 2009, 49, 73-82. Web of ScienceCrossrefGoogle Scholar

  • [24] Caspeta L., Shoaie S., Agren R., Nookaew I., Nielsen J., Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials, J. BMC Systems Biology, 2012, 24, 1-14. Web of ScienceGoogle Scholar

  • [25] Thomas K.C., Ingledew W.M., Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes, Applied and Environmental Microbiology, 1992, 56, 2046-2050. Google Scholar

  • [26] Jeffries T.W., Jin Y., Ethanol and thermotolerance in the bioconversion of xylose by yeasts, Advances in Applied Microbiology, 2009, 47, 221-268. CrossrefGoogle Scholar

  • [27] Rouhollah H., Iraj N., Giti E., Sorah A., Mixed sugar fermentation by Pichia stipitis, Sacharomyces cerevisiae, and an isolated xylose fermenting Kluyveromyces marxianus and their cocultures, African Journal of Biotechnology, 2007, 9, 1110-1114. Google Scholar

  • [28] Lee W.J., Yoon J.R., Park K.J., Chung K.M., Fermentation of corn and wheat with supplementation of inactive dry brewer’s yeast, J. Ameri. Soci. Brew. Chem., 2000, 58, 155-159. Google Scholar

  • [29] Agbogbo F.K., Coward-Kelly G., Torry-Smith M., Wenger K.S., Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochemstry Journal, 2006, 41, 2333–2336. Google Scholar

  • [30] Hotz C., Gibson R.S., Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets, The Journal of Nutrition, 2007, 137, 1097-1100. Google Scholar

  • [31] Gutierrez-Rivera C., Mendoza G.D., Pinos-Rodriguez R., Aranda E., Ricalde R., Mirande L.A., Effect of Storage Time and Processing Temperature of Grains With Added Amylolytic Enzymes on In situ Ruminal Starch Digestion, Journal of Applied Animal Research, 2011, 1, 39-44. Google Scholar

  • [32] Wu X., Stagenborg S., Propheter J.L., Rooney W.L., Yu J., Wang D., Features of sweet sorghum juice and their performance in ethanol fermentation, Journal of Industrial Crops and Products, 2010, 13, 164-170. Google Scholar

  • [33] Sheorain V, Banka R, Chavan M., Ethanol production from sorghum, In: Chandrashekar A., Bandyopadhyay R., Hall A.J., (Eds.), Proceedings of an international consultation, (18-19 May 2000, Andhra Pradesh, India), ICRISAT, Andhra Pradesh, 2000, 228-239. Google Scholar

  • [34] Ogbonna A.C., Current developments in malting and brewing trials with sorghum in Nigeria: A Review, J. Inst. Brew., 2011, 3, 394-400. Web of ScienceGoogle Scholar

  • [35] Okolo B.N., Moneke A.N., Ezeogu L.I. Ire F.S., The effects of calcium regulation of endosperm reserve protein mobilization of the Nigeria sorghum cultivars, ICSV 400 and KSV 8 during malting, J. Afri. Biotech., 2011, 27, 5355-5369. Google Scholar

  • [36] Serna-Saldivar S.R.O., Cereal grains: properties, processing and nutritional attributes (Food preservation technology), The Food Preservation Technology Series, 1st ed. CRC, New York, 2011 Google Scholar

  • [37] Adeteju A.O., Ayoade A.M., Obafemi A., Moisture Dependance of Some Properties of Malted Sorghum Grains, American- Eurasian Journal of Agricultural & Environmental Sciences, 2012, 3, 365-368. Google Scholar

About the article

Received: 2014-09-01

Accepted: 2015-02-10

Published Online: 2015-08-18

Published in Print: 2016-01-01


Citation Information: Bioethanol, Volume 2, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2015-0001.

Export Citation

© 2015 Muhammad Nasidi et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in