Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Ed. by Ruiz, Héctor

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Cross-species PCR and field studies on Paulownia elongata: A potential bioenergy crop

Chhandak Basu
  • Corresponding author
  • Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nirmal Joshee
  • Corresponding author
  • Graduate Program in Biotechnology, Fort Valley State University, Fort Valley, Georgia 31030, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tigran Gezalian
  • Corresponding author
  • UCLA Harbor Medical Center, 1000W. Carson Street, Torrance, California 90502, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brajesh Nanda Vaidya
  • Corresponding author
  • Graduate Program in Biotechnology, Fort Valley State University, Fort Valley, Georgia 31030, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Asada Satidkit
  • Corresponding author
  • Baxter Bioscience, 1700Rancho Cojejo Blvd., Thousand Oaks, California 91320, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Homa Hemmati
  • Corresponding author
  • Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zachary David Perry
  • Corresponding author
  • Graduate Program in Biotechnology, Fort Valley State University, Fort Valley, Georgia 31030, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-18 | DOI: https://doi.org/10.1515/bioeth-2015-0002


Paulownia elongata is a short-rotation fast growing tree and is known for high biomass accumulation and carbon sequestration potential. Optimization of protocols for nucleic acid extraction, PCR, RT-PCR, and other molecular biology techniques are required for better understanding of cellulose synthesis and to assess the potential of Paulownia as a biofuel tree. The main objective of this work was to study a putative cellulose synthase amplicon expression under various environmental conditions and evaluate the potentials of Paulownia as a biofuel tree. Using cross-species PCR an amplicon representative of a putative cellulose synthase gene from Paulownia was identified. This 177-bp long DNA sequence was 46% similar with cellulose synthase genes from Arabidopsis as expected. Gene specific primers for this particular Paulownia cellulose synthase gene were designed and reverse transcription PCR was performed to confirm its transcription. We report an inexpensive cDNA dot-blot method to study expression of this gene under various environmental conditions. We observed that cold and, to a lesser extent, heat stress downregulated its expression. This information will help to understand cellulose deposition in plant cell wall under stressful conditions. To the best of our knowledge this is the first characterization of a cDNA sequence from Paulownia elongata.

This article offers supplementary material which is provided at the end of the article.

Keywords: biomass; carbon sequestration; cDNA; cellulose synthase; cross-species PCR; Paulownia elongata


  • [1] Zhu Z.H., Chao C.J., Lu X.Y., Xiong Y.G., Paulownia in China: Cultivation and Utilization, Asian Network for Biological Sciences and International Development Research Center, 1986. Google Scholar

  • [2] Jaakola L., Pirttilä A.M., Hohtola A., cDNA blotting offers an alternative method for gene expression studies, Plant Mol. Biol. Rep., 2001, 19, 125-128. CrossrefGoogle Scholar

  • [3] Festucci-Buselli R.A., Otoni W.C., Joshi C.P., Structure, organization, and functions of cellulose synthase complexes in higher plants, Brazilian J. Plant Phys., 2007, 19, 1-13. Google Scholar

  • [4] Joshee N., Paulownia: a multipurpose tree for rapid lignocellulosic biomass production, in: Kole C., Joshi C.P., Shonnard D. (Eds.), Handbook of Bioenergy Crop Plants, Taylor & Francis, Boca Raton, 2012, 671–686. Google Scholar

  • [5] Tisserat B., Joshee N., Mahapatra A.K., Selling G.W., Finkenstadt V.L., Physical and mechanical properties of extruded poly(lactic acid)-based Paulownia elongata biocomposites, Industrial Crops and Products, 2013, 44, 88–96. Google Scholar

  • [6] Yan J., Joshee N., Liu S., A kinetic study on the hot-water extraction of Paulownia elongata woodchips, J. Bioprocess Eng. and Biorefinery, 2013, 2, 1-10. Google Scholar

  • [7] Suzuki S., Li L., Sun Y.H., Chiang V.L., The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa, Plant Physiol., 2006, 142, 1233-1245. Google Scholar

  • [8] Demura T., Ye Z.H. Regulation of plant biomass production, Curr Opin Plant Biol., 2010, 13, 299-304. CrossrefGoogle Scholar

  • [9] Taylor N.G., Cellulose biosynthesis and deposition in higher plants, New Phyt., 2008, 178, 239–252. Google Scholar

  • [10] Richmond T.A., Somerville C.R., The cellulose synthase superfamily, Plant Physiol., 2000, 124, 495-498. Google Scholar

  • [11] Richmond T., Higher plant cellulose synthases, Genome Biol., 2000, 1. Google Scholar

  • [12] Pear J.R., Kawagoe Y., Schreckengost W.E., Delmer D.P., Stalker D.M., Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase, Proc. Natl. Acad. Sci., 1996, 93, 12637-12642. Google Scholar

  • [13] Pauly M., Keegstra K., Cell-wall carbohydrates and their modification as a resource for biofuels, The Plant J., 2008, 54, 559–568. CrossrefWeb of ScienceGoogle Scholar

  • [14] Kalluri U.C., Joshi C.P., Differential expression patterns of two cellulose synthase genes are associated with primary and secondary cell wall development in aspen trees, Planta, 2004, 220, 47-55. Google Scholar

  • [15] Lu S., Li L., Yi X., Joshi C.P., Chiang V.L., Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress, J. Exp. Bot., 2008, 59, 681-695. Web of ScienceGoogle Scholar

  • [16] Obembe O.O., Jacobsen E., Vincken J.P., Visser R.G., Differential expression of cellulose synthase (CesA) gene transcripts in potato as revealed by QRT-PCR, Plant Physiol. Biochem., 2009, 47, 1116-1118. Web of ScienceGoogle Scholar

  • [17] Nogueira F.T., De Rosa V.E., Jr., Menossi M., Ulian E.C., Arruda P., RNA expression profiles and data mining of sugarcane response to low temperature, Plant Physiol., 2003, 132, 1811-1824. Google Scholar

  • [18] Cao Y., Zhang Q., Chen Y., Zhao H., Lang Y., Yu C., Yang J., Identification of differential expression genes in leaves of rice (Oryza sativa L.) in response to heat stress by cDNA-AFLP analysis, Biomed. Res. Int., 2013, 576189. Google Scholar

  • [19] Smith C.J., Osborn A.M., Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology, FEMS Microbiol. Ecol., 2009, 67, 6-20. Web of ScienceGoogle Scholar

  • [20] Stults J.R., Snoeyenbos-West O., Methe B., Lovley D.R., Chandler D.P., Application of the 5’ fluorogenic exonuclease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments, Appl. Environ. Microbiol., 2001, 67, 2781-2789. Google Scholar

  • [21] Nicot N., Hausman J.F., Hoffmann L., Evers D., Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress, J. Exp. Bot., 2005, 56, 2907-2914. CrossrefGoogle Scholar

  • [22] Iyengar S., Seaman M., Deinard A.S., Rosenbaum H.C., Sirugo G., Castiglione C.M., Kidd J.R., Kidd K.K., Analyses of cross species polymerase chain reaction products to infer the ancestral state of human polymorphisms, DNA Seq., 1998, 8, 317-327. Google Scholar

  • [23] Hart S.M., Basu C., Optimization of a digoxigenin-based immunoassay system for gene detection in Arabidopsis thaliana, J. Biomol. Tech., 2009, 20, 96-100. Google Scholar

  • [24] Arumuganathan K., Earle E.D., Nuclear DNA content of some important plant species, Plant Mol. Biol. Rep., 1991, 9, 208-218. CrossrefGoogle Scholar

  • [25] Dolezel J., Bartos J., Plant DNA flow cytometry and estimation of nuclear genome size, Ann. Bot., 2005, 95, 99-110. Google Scholar

  • [26] Tuskan G.A., DiFazio S.P., Teichmann T., Poplar genomics is getting popular: the impact of the poplar genome project on tree research, Plant Biol., 2004, 6, 2-4. CrossrefGoogle Scholar

  • [27] Housley D.J.E., Zalewski Z.A., Beckett S.E., Venta P.J., Design factors that influence PCR amplification success of crossspecies primers among 1147 mammalian primer pair, BMC Genomics, 2006, 7, 253. CrossrefGoogle Scholar

  • [28] Primmer C.R., Merilä J., A low rate of cross-species microsatellite amplification success in Ranid frogs, Conservation Gen., 2002, 3, 445–449. CrossrefGoogle Scholar

  • [29] Valsecchi E., Amos W., Microsatellite markers for the study of cetacean populations, Mol. Ecol., 1996, 5, 151-156. CrossrefGoogle Scholar

  • [30] Garner T.W., Genome size and microsatellites: the effect of nuclear size on amplification potential, Genome, 2002, 45, 212-215. CrossrefGoogle Scholar

  • [31] Bezault E., Rognon X., Gharbi K., Baroiller J.-F., Chevassus B., Microsatellites Cross-Species Amplification across Some African Cichlids, Intl. J. Evolutionary Biol.,2012, 2012, 1-7. Google Scholar

  • [32] Gen-Hua Y., Kovacs B., Orban L., A New Problem with Cross- Species Amplification of Microsatellites: Generation of Non-Homologous Products, Zoological Res., 2010, 31, 131−140. CrossrefGoogle Scholar

  • [33] Wu L., Joshi C.P., Chiang V.L., A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress, Plant J., 2000, 22, 495-502. CrossrefGoogle Scholar

  • [34] Burton R.A., Gibeaut D.M., Bacic A., Findlay K., Roberts K., Hamilton A., Baulcombe D.C., Fincher G.B., Virus-induced silencing of a plant cellulose synthase gene, Plant Cell, 2000, 12, 691-706. CrossrefGoogle Scholar

  • [35] Held M.A., Penning B., Brandt A.S., Kessans S.A., Yong W., Scofield S.R., Carpita N.C., Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley, Proc. Natl. Acad. Sci., 2008, 105, 20534-20539. Web of ScienceGoogle Scholar

  • [36] Baral A., Guha G.S., Trees for carbon sequestration or fossil fuel substitution: the issue of cost vs. carbon benefit, Biomass and Bioenergy, 2004, 27, 41–55. Google Scholar

  • [37] Yadav, N. K.,Vaidya, B. N., Henderson, K., Lee, J. F., Stewart, W. M., Dhekney, S. A., and Joshee, N, . A Review of Paulownia Biotechnology: A Short Rotation, Fast Growing Multipurpose Bioenergy Tree, American J Plant Sciences, 2013, 4, 2070-2082. Google Scholar

About the article

Received: 2014-10-28

Accepted: 2015-05-04

Published Online: 2015-12-18

Published in Print: 2016-01-01

Citation Information: Bioethanol, Volume 2, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2015-0002.

Export Citation

© 2015 Chhandak Basu, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in