Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Ed. by Ruiz, Héctor

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

New methods for positive selection of yeast ethanol overproducing mutants

Kostyantyn V. Dmytruk
  • Corresponding author
  • Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005 Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbara V. Kshanovska
  • Corresponding author
  • Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005 Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Charles A. Abbas / Andriy Sibirny
  • Corresponding author
  • Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-29 | DOI: https://doi.org/10.1515/bioeth-2015-0003


Fuel ethanol is an environmentally friendly alternative liquid fuel to the widely used petroleum derived transportation liquid fuels. Since 2007, worldwide fuel ethanol production has increased. Currently ethanol is primarily produced from carbohydrates such as sucrose and starch by fermentation using the yeast Saccharomyces cerevisiae. In this work, new approaches for the selection of S. cerevisiae strains with increased ethanol production from hydrolyzed corn meal are described. An industrial production strain of Saccharomyces cerevisiae AS400 was subjected to positive selection of mutants resistant to toxic concentrations of oxythiamine, trehalose, 3-bromopyruvate, glyoxylic acid, and glucosamine. The selected mutants are characterized by 5-8% increase in ethanol yield (g g-1 of consumed glucose) as compared to the parental industrial ethanol-producing strain. A three-step selection approach that consisted of the use of glyoxylic acid, glucosamine and bromopyruvate resulted in a 12% increase in ethanol yield during fermentation on industrial media. These results indicate that the selected strains are promising candidates for industrial ethanol production.

Keywords: fuel ethanol; yeast; selection; alcoholic fermentation


  • [1] Dashko S., Zhou N., Compagno C., Piškur J., Why, when, and how did yeast evolve alcoholic fermentation?, FEMS Yeast Res., 2004, 14(6), 826-832. Web of ScienceCrossrefGoogle Scholar

  • [2] Piškur J., Langkjaer R.B., Yeast genome sequencing: the power of comparative genomics, Mol. Microbiol., 2004, 53, 381–389. CrossrefGoogle Scholar

  • [3] Gombert A.K., van Maris A.J., Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes, Curr. Opin. Biotechnol., 2015, 7, 33C, 81-86. Google Scholar

  • [4] Nissen T.L., Kielland-Brandt M.C., Nielsen J., Villadsen J., Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation, Metab. Eng., 2000, 2, 69-77. CrossrefGoogle Scholar

  • [5] Bro C., Regenberg B., Forster J., Nielsen J., In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production, Metab. Eng. 2006, 8, 102-111. CrossrefGoogle Scholar

  • [6] Guo Z., Zhang L., Ding Z., Shi G., Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance, Metab. Eng., 2011, 13, 49-59. Web of ScienceCrossrefGoogle Scholar

  • [7] Zhang L., Tang Y., Guo Z., Ding Z., Shi G., Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae, Biotechnol. Lett., 2011, 33, 1375-1380. CrossrefGoogle Scholar

  • [8] de Kok S., Kozak B.U., Pronk J.T., Van Maris A., Energy coupling in Saccharomyces cerevisiae: selected opportunities formetabolic engineering, FEMS Yeast Res., 2012, 12, 387-397. Web of ScienceCrossrefGoogle Scholar

  • [9] Navas M.A., Cerdan S., Gancedo J.M., Futile cycles in Saccharomyces cerevisiae strains expressing the gluconeogenic enzymes during growth on glucose, Proc. Nat. Acad. Sci. USA, 1993, 90, 1290-1294. CrossrefGoogle Scholar

  • [10] Dmytruk K.V., Semkiv M.V., Sibirny A.A., Ethanol yield and reduction of biomass accumulation in the recombinant strain of Saccharomyces cerevisiae overexpressing ATPase, WO/2010/151866. 2010. Google Scholar

  • [11] Semkiv M.V., Dmytruk K.V., Abbas C.A., Sibirny A.A., Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase, BMC Biotechnol., 2014, 14, 42. CrossrefGoogle Scholar

  • [12] Grossmann M., Kiessling F., Singer J., Schoeman H., Schröder M.B., von Wallbrunn C., Genetically modified wine yeasts and risk assessment studies covering different steps within the wine making process, Ann. Microbiol., 2011, 61, 103–115. Google Scholar

  • [13] Chambers P.J., Bellon J.R., Schmidt S.A., Varela C., Pretorius I.S., Non-genetic engineering approaches to isolating and generating novel yeast for industrial applications, In: Kunze G., Satyanarayana T. (eds), Yeast biotechnology: Diversity and applications, Springer Science+Business Media, 433–457, 2009. Google Scholar

  • [14] Cakar Z.P., Seker U.O., Tamerler C., Sonderegger M., Sauer U., Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae, FEMS Yeast Res., 2005, 5, 569–578. Web of ScienceCrossrefGoogle Scholar

  • [15] Zeyl C., The number of mutations selected during adaptation in a laboratory population of Saccharomyces cerevisiae, Genetics, 2005, 169, 1825–1831. Google Scholar

  • [16] Kuyper M., Toirkens M.J., Diderich J.A., Winkler A.A., van Dijken J.P., Pronk J.T., Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain, FEMS Yeast Res., 2005, 5, 925–934. CrossrefGoogle Scholar

  • [17] Higgins V.J., Bell P.J.L., Dawes I.W., Attfield P.V., Generation of a novel Saccharomyces cerevisiae strain that exhibits strong maltose utilization and hyperosmotic resistance using nonrecombinant techniques, Appl. Environ. Microbiol., 2001, 67, 4346–4348. Google Scholar

  • [18] Stanley D., Fraser S., Chambers P.J., Rogers P., Stanley G.A., Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae, J. Ind. Microbiol. Biot., 2010, 37, 139–149. Web of ScienceCrossrefGoogle Scholar

  • [19] Cadiere A., Ortiz-Julien A., Camarasa C., Dequin S., Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway, Metab. Eng., 2011, 13, 263–271. CrossrefWeb of ScienceGoogle Scholar

  • [20] Lawford H.G., Rousseau J.D., Corn steep liquor as a cost-effective nutrition adjunct in high-performance Zymomonas ethanol fermentations, Applied Biochemistry and Biotechnology, Spring 1997, 63-65, 1, 287-304. Google Scholar

  • [21] Christianson D.D., Cavins J.F., Wall J.S., Steep liquor constituents, identification and determination of nonprotein nitrogenous substances in corn steep liquor., J. Agric. Food Chem., 1965, 13(3), 277–280. CrossrefGoogle Scholar

  • [22] Lin Y., Tanaka S., Ethanol fermentation from biomass resources: current state and prospects, Appl. Microbiol. Biotechnol., 2006, 69, 627-642. CrossrefGoogle Scholar

  • [23] Gonchar M.V., Sensitive method for quantitative determination of hydrogen peroxide and oxidase substrates in biological samples, Ukr. Biokhim. Zh., 1998, 70, 157–163. Google Scholar

  • [24] Gonchar M.V., Maidan M.M., Pavlishko H.M., Sibirny A.A., A new oxidase-peroxidase kit for ethanol assays in alcoholic beverages, Food. Technol. Biotechnol. 2001, 39, 37–42. Google Scholar

  • [25] Tylicki A., Czerniecki J., Dobrzyn P., Matanowska A., Olechno A., Strumilo S., Modification of thiamine pyrophosphate dependent enzyme activity by oxythiamine in Saccharomyces cerevisiae cells, Can. J. Microbiol., 2005, 51(10), 833-839. CrossrefGoogle Scholar

  • [26] Kaino T., Takagi H., Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses, Appl. Microbiol. Biotechnol., 2008, 79, 273–283. Web of ScienceCrossrefGoogle Scholar

  • [27] Lippert K., Galinski E.A., Trueper H.G., Biosynthesis and function of trehalose in Ectothiorhodospira halochloris, Antonie Leeuwenhoek 1993, 63, 85-91. Google Scholar

  • [28] Ko Y.H., Pedersen P.L., Geschwind J.F., Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase, Cancer Lett., 2001, 173, 83–91. Google Scholar

  • [29] Geschwind J.F., Georgiades C.S., Ko Y.H., Pedersen P.L., Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma, Expert Rev. Anticancer Ther., 2004, 4, 449–457. CrossrefGoogle Scholar

  • [30] Kurylenko O.O., Ruchala J., Hryniv O.B., Abbas C.A, Dmytruk K.V., Sibirny A.A., Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation, Microb. Cell. Fact., 2014, 13, 122. CrossrefWeb of ScienceGoogle Scholar

  • [31] Uhlemann H., Schellenberger A., Glyoxylic acid as an active site marker of yeast pyruvate decarboxylase, FEBS Lett., 1976, 63, 37-39. CrossrefGoogle Scholar

  • [32] Bekesi J.G., Molnar Z., Richard J., Winzler inhibitory effect of d-glucosamine and other sugar analogs on the viability and transplantability of ascites tumor cells, Cancer Res., 1969, 29, 353–359. Google Scholar

About the article

Received: 2014-12-11

Accepted: 2015-06-29

Published Online: 2016-01-29

Published in Print: 2016-01-01

Citation Information: Bioethanol, Volume 2, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2015-0003.

Export Citation

© 2016 Kostyantyn V. Dmytruk et al. . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Marta V. Semkiv, Kostyantyn V. Dmytruk, Charles A. Abbas, and Andriy A. Sibirny
Bioengineered, 2016, Volume 7, Number 2, Page 106

Comments (0)

Please log in or register to comment.
Log in