Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bioethanol

Ed. by Ruiz, Héctor

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-6788
See all formats and pricing
More options …

Alkali treatment of fungal pretreated wheat straw for bioethanol production

María García-Torreiro
  • Corresponding author
  • Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miguel Álvarez Pallín
  • Corresponding author
  • Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ María López-Abelairas
  • Corresponding author
  • Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thelmo A. Lu-Chau
  • Corresponding author
  • Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan M. Lema
  • Corresponding author
  • Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-29 | DOI: https://doi.org/10.1515/bioeth-2015-0004

Abstract

Bioconversion of lignocellulosic materials into ethanol requires an intermediate pretreatment step for conditioning biomass. Sugar yields from wheat straw were previously improved by the addition of a mild alkali pretreatment step before bioconversion by the white-rot fungus Irpex lacteus. In this work, an alternative alkaline treatment, which significantly reduces water consumption, was implemented and optimized. Sugar recovery increased 117% with respect to the previously developed alkaline wash process at optimal process conditions (30°C, 30 minutes and 35.7% (w/w) of NaOH). In order to further reduce operational costs, a system for alkali recycling was implemented. This resulted in the treatment of 150% more wheat straw using the same amount of NaOH. Finally, enzymatic hydrolysis was optimized and resulted in a reduction of enzyme dose of 33%.

This article offers supplementary material which is provided at the end of the article.

Keywords: Alkaline pretreatment; Bioethanol; Lignocellulosic materials; Wheat straw; Biological pretreatment

References

  • [1] Koutinas A.A., Wang R.H., Webb C., The biochemurgist -Bioconversion of agricultural raw materials for chemicals production, Biofuels Bioprod. Biorrefin., 2007, 1, 24-38. Web of ScienceGoogle Scholar

  • [2] Bevan M.W., Franssen M.C.R., Investing in green and white biotech, Nat. Biotechnol., 2006, 24, 765-767. Web of ScienceCrossrefGoogle Scholar

  • [3] Limayem A., Ricke S.C., Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects, Prog. Energy Combust.Sci., 2012, 38, 449-467. Web of ScienceGoogle Scholar

  • [4] Galbe M., Zacchi G., Pretreatment: The key to efficient utilization of lignocellulosic materials, Biomass Bioenergy, 2012, 46, 70-78. Web of ScienceGoogle Scholar

  • [5] McMillan J.D., Pretreatment of lignocellulosic biomass, In: Himmel M.E., Baker J.O., Overend R.P. (Eds.), Enzymatic Conversion of Biomass for Fuels Production, American Chemical Society, Washington DC, 1994. Google Scholar

  • [6] Yu H., Du W., Zhang J., Ma F., Zhang X., Zhong W., Fungal treatment of cornstalks enhances the delignification and xylan loss during mild alkaline pretreatment and enzymatic digestibility of glucan, Bioresour. Technol., 2010, 101, 6728-6734. Web of ScienceCrossrefGoogle Scholar

  • [7] Xu C., Ma F., Zhang X., Chen S., Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis, J. Agric. Food Chem., 2010, 58, 10893-10898. Google Scholar

  • [8] Salvachúa D., Prieto A., López-Abelairas M., Lu-Chau T., Martínez A.T., Martínez M.J., Fungal pretreatment: An alternative in second-generation ethanol from wheat straw, Bioresour. Technol., 2011, 102, 7500-7506. CrossrefWeb of ScienceGoogle Scholar

  • [9] López-Abelairas M., Álvarez Pallín M., Salvachúa D., Lu-Chau T.A., Martínez M.J., Lema J.M., Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production, Bioprocess Biosyst. Eng., 2013, 36, 1251-1260. Web of ScienceGoogle Scholar

  • [10] Lee J., Biological conversion of lignocellulosic biomass to ethanol, J. Biotechnol, 1997, 56, 1-24. Google Scholar

  • [11] Hatakka A.I., Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose, Appl. Microbiol. Biotechnol., 1983, 18, 350-357. CrossrefGoogle Scholar

  • [12] Wang Z., Keshwani D.R., Redding A.P., Cheng J.P. Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass, Bioresour. Technol., 2010, 101, 3583-3585. CrossrefGoogle Scholar

  • [13] Vancov T., McIntosh S., Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenergy, 2011, 35, 3094-3103. Web of ScienceGoogle Scholar

  • [14] Sun Y., Cheng J., Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol., 2002, 83, 1-11. Google Scholar

  • [15] Bjerre A.B., Olesen A.B., Fernqvist T., Plöger A., Schmidt A.S., Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose, Biotechnol. Bioeng., 1995, 49, 568-577. Google Scholar

  • [16] Silverstein R.A., Chen Y., Sharma-Shivappa R.R., Boyette M.D., Osborne J., A comparison of chemical pretreatment methods for improving saccharification of cotton stalks, Bioresour. Technol., 2007, 98, 3000-3011. Google Scholar

  • [17] de Vrije T., de Haas G.G., Tan G.B., Keijsers E.R.P., Claassen P.A.M. Pretreatment of Miscanthus for hydrogen production by Thermotoga elffi, Int. J. Hydrogen Energy, 2002, 27, 1381-1390. CrossrefGoogle Scholar

  • [18] Cheng Y.S., Zheng Y., Yu C.W., Dooley T.M., Jenkins B.M., Van der Gheynst J.S., Evaluation of high solids alkaline pretreatment of rice straw, Appl. Biochem. Biotechnol., 2010, 162, 1768-1784 Web of ScienceGoogle Scholar

  • [19] Álvarez Pallín M., Design of a solid-state fermentation reactor for the biological pretreatment of lignocellulosic biomass, Master’s thesis, University of Santiago de Compostela, Santiago de Compostela, Spain, 2010. Google Scholar

  • [20] López-Abelairas M., Lu-Chau T.A., Lema J.M., Enhanced saccharification of biologically pretreated wheat straw for ethanol production. Appl. Biochem. Biotechnol., 2013, 169, 1147-1159. Web of ScienceGoogle Scholar

  • [21] Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D., Determination of structural carbohydrates and lignin in biomass, Laboratory Analytical Procedure, NREL, 2007. Google Scholar

  • [22] Miller G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugars, Anal. Chem., 1959, 31, 426-428. CrossrefGoogle Scholar

  • [23] Overend R.P., Chornet E., Fractionation of lignocellulosics by steam-aqueous pretreatments, Philos. Trans. R. Soc. Lond. A, 1987, 321, 523-536. Google Scholar

  • [24] Chum H.L., Johnson D.K., Black S.K., Overend R.P., Pretreatment-catalyst effects and the combined severity parameter, Appl. Biochem. Biotechnol., 1990, 24-25, 1-14. Google Scholar

  • [25] Toquero C., Bolado S., Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing, Bioresour. Technol., 2014, 157, 68-76. Google Scholar

  • [26] Sun R., Lawther J.M., Banks W.B., Influence of alkaline pre-treatments on the cell wall components of wheat straw, Ind. Crops Prod., 1995, 4, 127-145. CrossrefGoogle Scholar

  • [27] Pavlostathis S.G., Gossett J.M. Alkaline treatment of wheat straw for increasing anaerobic biodegradability, Biotechnol. Bioeng., 1985, 27, 334-344. CrossrefGoogle Scholar

  • [28] Pedersen M., Meyer A.S., Lignocellulose pretreatment severity - relating pH to biomatrix opening, N. Biotechnol., 2010, 27, 739-750. Google Scholar

  • [29] Sills D.L., Gossett J.M., Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass, Bioresour. Technol., 2011, 102, 1389-1398. CrossrefWeb of ScienceGoogle Scholar

  • [30] Curreli N., Fadda M.B., Rescigno A., Rinaldi A.C., Soddu G., Sollai F., Vaccargiu S., Sanjust E., Rinaldi A., Mild alkaline/ oxidative pretreatment of wheat straw, Process Biochem., 1997, 32, 665-670. CrossrefGoogle Scholar

  • [31] Mathew A.K., Chaney K., Crook M., Humphries A.C., Alkaline pre-treatment of oilseed rape straw for bioethanol production: Evaluation of glucose yield and pre-treatment energy consumption, Bioresour. Technol., 2011, 102, 6547-6553. CrossrefGoogle Scholar

  • [32] Xu J., Cheng J.J., Sharma-Shivappa R.R., Burns J.C., Sodium hydroxide pretreatment of switchgrass for ethanol production, Energy Fuels, 2010, 24, 2113-2119. CrossrefGoogle Scholar

  • [33] Sindhu R., Kuttiraja M., Binod P., Sukumaran R.K., Pandey A., Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology, Renew. Energy, 2014, 62, 362-368. CrossrefWeb of ScienceGoogle Scholar

  • [34] Carrillo F., Lis M.J., Colom X., López-Mesas M., Valldeperas J., Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: Kinetic study, Process Biochem., 2005, 40, 3360-3364. Google Scholar

  • [35] Zhu S., Wu Y., Yu Z., Chen Q., Wu G., Yu F., Wang C., Jin S., Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis, Biosyst. Eng., 2006, 94, 437-442. Google Scholar

About the article

Received: 2014-11-10

Accepted: 2015-05-04

Published Online: 2016-01-29


Citation Information: Bioethanol, Volume 2, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2015-0004.

Export Citation

© 2016 María García-Torreiro et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. García-Torreiro, M. López-Abelairas, T.A. Lu-Chau, and J.M. Lema
Industrial Crops and Products, 2016, Volume 89, Page 486
[2]
Muhammad Asgher, Abdul Wahab, Muhammad Bilal, and Hafiz Muhammad Nasir Iqbal
Biocatalysis and Agricultural Biotechnology, 2016, Volume 6, Page 195

Comments (0)

Please log in or register to comment.
Log in