Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bioethanol

Ed. by Ruiz, Héctor

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-6788
See all formats and pricing
More options …

Ethanol production by Pichia stipitis immobilized on sugarcane bagasse

BS Yñiguez-Balderas
  • Corresponding author
  • Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos (UNIDA), Veracruz, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B Ortiz-Muñiz
  • Corresponding author
  • Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos (UNIDA), Veracruz, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J Gómez-Rodríguez
  • Corresponding author
  • Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos (UNIDA), Veracruz, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B Gutierrez-Rivera
  • Corresponding author
  • Instituto Tecnológico Superior de Tierra Blanca, Av. Veracruz s/n. Col. PEMEX, 95180 Tierra Blanca, Veracruz, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ MG Aguilar-Uscanga
  • Corresponding author
  • Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos (UNIDA), Veracruz, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-11 | DOI: https://doi.org/10.1515/bioeth-2016-0001

Abstract

The search for new ethanol production technologies is due to this biofuel being a renewable and environmentally friendly option. Immobilized cell systems for ethanol production have been studied; however, the phenomenon involved in cell sorption on raw materials has been poorly explored. Therefore, this work evaluates P. stipitis immobilization on sugarcane bagasse pretreated with sulphuric acid, as well as ethanol production in batch culture. The results obtained showed that the Guggenheim-Anderson-de Boer (GAB) model explained the sorption phenomenon. The selected inoculum size for immobilization was the same as the monolayer sorption capability (1.17 gl-1). Using 1:100 g ml- 1 solid-liquid ratio, at 250 rpm, ethanol yield and productivity of 0.404 gg-1 glucose and 0.41 gl-1h-1 were obtained, respectively. The immobilized systems were stable for up to twenty-five repeated batches (36 h each). Ethanol production was increased from the first to the twenty-fifth batch (18.1 and 24.7 gl-1 ethanol). The use of complex media, such as molasses “B” or sugarcane hydrolyzates, caused an increase in process efficiency 2.4 and 1.8-fold respectively, compared with free cells systems. Biotechnological ethanol production from lignocellulosic hydrolyzates could be improved by the use of the immobilization cell sorption on pre-treated raw materials.

Keywords: yeast sorption; sugarcane bagasse hydrolyzate; molasses “B”; ethanol production; sorption immobilization

References

  • [1] Bai F.W., Anderson W.A., Moo-Young M., Ethanol fermentation technologies from sugar and starch feedstocks, Biotechnol. Adv. 2008, 26, 89-105. Web of ScienceGoogle Scholar

  • [2] Mussatto S.I., Dragone G., Guimaraes P.M.R., Silva J.P.A., Carneiro L.M., Roberto I.C., Vicente A., Domingues L., Teixeira J.A., Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 2010, 28, 817-830. Google Scholar

  • [3] Yu J., Zhang X., Tan T., An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. Biotechnol, 2007, 129, 415-420. Google Scholar

  • [4] Yu J., Yue G., Zhong J., Zhang X., Tan T., Immobilization of Saccharomyces cerevisiae to modified bagasse for ethanol production. Renew Energy. 2010, 35, 1130-1134. Web of ScienceGoogle Scholar

  • [5] Pacheco A.M., Gondim D.R., Barros-Goncalves L.R., Ethanol Production by Fermentation Using Immobilized Cells of Saccharomyces cerevisiae in Cashew Apple Bagasse. Appl. Biochem. Biotechnol., 2010, 161, 209-217. Google Scholar

  • [6] Silva S.S., Mussatto S.I., Santos J.C., Santos D.T., Polizel J., Cell immobilization and xylitol production using sugarcane bagasse as raw material. Appl. Biochem. Biotechnol., 2007, 141, 215-227. Google Scholar

  • [7] Kierstan M., CT B., The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol. Bioeng., 1997, 19, 387-397. Google Scholar

  • [8] Andrade R.D., Lemus R., Pérez C.E., Models of sorotion isotherms for food: uses and limitations. Vitae, Revista de la Facultad de Química Farmacéutica, 2011, 18(3), 325-334. Google Scholar

  • [9] Baptista S.G., Coias J.M.A., Oliveira A.C.M., Oliveira N.M.C., Rocha J.M.S., Dempsey M.J., Lannigan K.C., Benson P.S., Natural immobilisation of microorganisms for continuous ethanol production. Enzyme and Microbial Technology, 2006, 40, 127-131. Google Scholar

  • [10] Agudelo Escobar L.M., Salazar Álvarez U., Peñuela M., Yeast immobilization in lignocellulosic wastes for ethanol production in packed bed bioreactor. Revista Facultad de Ingeniería Universidad de Antioquia, 2012, 66-76. Google Scholar

  • [11] Sembiringa K., Mulyania H., Fitria I., Dahnuma D., Sudiyania Y., Rice flour and white glutinous rice flour for use on immobilization of yeast cell in ethanol production. Energy Procedia 2013, 32, 99-104. Google Scholar

  • [12] Santos D.T., Sarrouh B.F., Rivaldi J.D., Converti A., Silva S.S., Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production. J. Food Eng., 2008, 86, 542-548. Web of ScienceGoogle Scholar

  • [13] Ortiz-Muniz B., Carvajal-Zarrabal O., Aguilar B., Aguilar-Uscanga M.G., Improvement in ethanol production using respiratory deficient phenotype of a wild type yeast Saccharomyces cerevisiae ITV-01. Renew Energy, 2012, 37, 197-201. Web of ScienceGoogle Scholar

  • [14] Ortiz-Muniz B., Carvajal-Zarrabal O., Torrestiana-Sanchez B., Aguilar-Uscanga M.G., Kinetic study on ethanol production using Saccharomyces cerevisiae ITV-01 yeast isolated from sugar cane molasses. J. Chem. Technol. Biotechnol., 2010, 85, 1361-1367. Web of ScienceGoogle Scholar

  • [15] Basso L.C., de Amorim H.V., de Oliveira A.J., Lopes M.L., Yeast selection for fuel ethanol production in Brazil. Fems Yeast Research, 2008, 8, 1155-1163. Web of ScienceGoogle Scholar

  • [16] Ortiz-Muñiz B., Rasgado-Mellado J., Solis-Pacheco J., Nolasco- Hipólito C., Domínguez-González J.M., Aguilar-Uscanga M.G., Evaluation of the tolerance of acetic acid and 2-furaldehyde on the growth of Pichia stipitis and its respiratory deficient. Bioproc. Biosyst. Eng., 2014, DOI 10.1007/s00449-014-1183-8. Web of ScienceCrossrefGoogle Scholar

  • [17] Lange H., Bavouzet J., Taillander P., Delorme C., Systematic error and comparison of four methods for assessing the viability of Saccharomyces cerevisiae suspensions. Biotechnol Tech, 1993, 7(1), 223-228. CrossrefGoogle Scholar

  • [18] Godoy-Salinas, AJ. Producción de etanol con Saccharomyces cerevisiae ITV-01 DR inmovilizada en bagazo de caña. M.Sc. Thesis. Instituto Tecnológico de Veracruz, México, 2013. Google Scholar

  • [19] Aguilar-Uscanga B., Francois J., A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 2003, 37, 268-274. Google Scholar

  • [20] Chandel A.K., Narasu M.L., Chandrasekhar G., Manikyam A., Rao L.V., Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour. Technol. 2009, 100, 2404-2410. Web of ScienceGoogle Scholar

About the article

Received: 2014-09-30

Accepted: 2015-03-31

Published Online: 2016-02-11


Citation Information: Bioethanol, Volume 2, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2016-0001.

Export Citation

© 2016 Yñiguez-Balderas BS et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in