Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Ed. by Ruiz, Héctor

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Ethanol production from olive stone hydrolysates by xylose fermenting microorganisms

J.M. Romero-García
  • Corresponding author
  • Dept. Chemical, Environmental and Materials Engineering, Agrifood Campus of International Excellence, ceiA3, Universidad de Jaén, 23071 Jaén, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Martínez-Patiño
  • Corresponding author
  • Dept. Chemical, Environmental and Materials Engineering, Agrifood Campus of International Excellence, ceiA3, Universidad de Jaén, 23071 Jaén, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. Ruiz
  • Corresponding author
  • Dept. Chemical, Environmental and Materials Engineering, Agrifood Campus of International Excellence, ceiA3, Universidad de Jaén, 23071 Jaén, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ I. Romero
  • Corresponding author
  • Dept. Chemical, Environmental and Materials Engineering, Agrifood Campus of International Excellence, ceiA3, Universidad de Jaén, 23071 Jaén, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. Castro
  • Corresponding author
  • Dept. Chemical, Environmental and Materials Engineering, Agrifood Campus of International Excellence, ceiA3, Universidad de Jaén, 23071 Jaén, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-11 | DOI: https://doi.org/10.1515/bioeth-2016-0002


Olive stones are the main solid byproducts obtained from olive oil production and from table olives production. As a lignocellulosic material, the use of olive stones for ethanol and other chemicals production has been proposed, particularly under the biorefinery concept. As part of such a process, this work deals with the fractionation of the lignocellulosic material by dilute acid autoclave pretreatment at 2% sulfuric acid, 130°C, 60 min and 1:1 liquid to solid ratio. Moreover, the work addresses the fermentation of the liquors obtained after pretreatment. The released sugars are composed mainly by xylose and other hemicellulosic sugars. The fermentation performance of three xylose-fermenting microorganisms, e.g. two Escherichia coli species and Scheffersomyces stipitis, are compared. The study analyzes in a first step the microorganism behavior on synthetic liquors, with a similar composition to that of the real liquors. Finally, and taken into account the results from the previous steps, the real liquor obtained from olive stones pretreatment is fermented. Results show that E. coli MM160 is the best ethanol producer out of the three microorganisms studied. Globally, the pretreatment produced a liquor containing 140 g hemicellulosic sugars/l and requiring firstly dilution by 50% and a detoxification step by overliming. The fermentation of this liquor by E. coli MM160 results in a 25 g ethanol/l solution equivalent to 50 g ethanol/kg olive stone, in spite of 20 g acetic acid/l also present. These results confirm both olive stones and E. coli MM160 as promising feedstock and microorganism for ethanol production.

Keywords: Olive stones; bioethanol; biorefinery; xylose fermenting microorganisms; ethanologenic Escherichia coli; Scheffersomyces stipitis


  • [1] FAOSTAT, 2014. http://faostat.fao.org Google Scholar

  • [2] Romero-García JM, Niño L, Martínez-Patiño C, Álvarez C, Castro E, Negro MJ. Biorefinery based on olive biomass. State of the art and future trends. Bioresour Technol 2014;159: 421-32. CrossrefWeb of ScienceGoogle Scholar

  • [3] Rodríguez G, Lama A, Rodríguez R, Jiménez A, Guillén R, Fernández-Bolaños J. Olive stones an attractive source of bioactive and valuable compounds. Bioresour Technol 2008;99: 5261–9. Web of ScienceCrossrefGoogle Scholar

  • [4] Mata-Sánchez J, Pérez-Jiménez JA, Díaz-Villanueva MJ, Serrano A, Núñez-Sánchez N, López-Giménez FJ. Statistical evaluation of quality parameters of olive stone to predict its heating value. Fuel 2013;113: 750–6. CrossrefWeb of ScienceGoogle Scholar

  • [5] Agbogbo FK, Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 2008;30: 1515–24. CrossrefGoogle Scholar

  • [6] Díaz MJ; Ruiz E, Romero I, Cara C, Moya M, Castro E. Inhibition of Pichia stipitis fermentation of hydrolysates from olive tree cuttings. World J Microbiol Biotechnol 2009;25 (5): 891-9. CrossrefWeb of ScienceGoogle Scholar

  • [7] Díaz-Villanueva MJ, Cara-Corpas C, Ruiz-Ramos E, Romero- Pulido I, Castro-Galiano E. Olive tree pruning as an agricultural residue for ethanol production. Fermentation of hydrolysates from dilute acid pretreatment. Spanish J Agric Res 2012;10(3): 643-8. Web of ScienceCrossrefGoogle Scholar

  • [8] Jönsson LF, Alriksson B, Nilvebrant NO.Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 2013;6: 16. Web of ScienceCrossrefGoogle Scholar

  • [9] Orencio-Trejo M, Utrilla J, Fernández-Sandoval MT, Huerta- Beristain G, Gosset G, Martínez A. Engineering the Escherichia coli Fermentative Metabolis. Adv Biochem Eng/Biotechnol 2010;121: 71–107. Google Scholar

  • [10] Geddes CC, Mullinnix MT, Nieves IU, Peterson JJ, Hoffman RW, York SW, Yomano LP, Miller EN, Shanmugam KT, Ingram LO. Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour Technol 2011;102: 2702-11. CrossrefWeb of ScienceGoogle Scholar

  • [11] Castro E, Nieves IU, Mullinnix MT, Sagues WJ, HoffmanRW, Fernández-Sandoval MT, Tian Z, Rockwood DL, Tamang B, Ingram LO. Optimization of dilute-phosphoric-acid steam pretreatment of Eucalyptus benthamii for biofuel production. Appl Energy 2014;125: 76-83. CrossrefWeb of ScienceGoogle Scholar

  • [12] Jin M, Balan V, Gunawan C, Dale BE. Quantitatively understanding reduced xylose fermentation performance in AFEX™ treated corn stover hydrolysate using Saccharomyces cerevisiae 424A (LNH-ST) and Escherichia coli KO11. Bioresour Technol 2012;111: 294–300. Google Scholar

  • [13] El Asli A, Qatibi AI. Ethanol production from olive cake biomass substrate. Biotechnol Bioproc Eng 2009;14: 118-22. Web of ScienceCrossrefGoogle Scholar

  • [14] Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO. Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 2000;69: 526–36. CrossrefGoogle Scholar

  • [15] Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO. Low salt medium for lactate and ethanol production by recombinant Escherichia coli. B Biotechnol Lett 2007;29: 397–404. CrossrefGoogle Scholar

  • [16] National Renewable Energy Laboratory. Chemical analysis and testing laboratory analytical procedures. URL (http://www.eere. energy.gov/biomass/analytical_ procedures.html). Accessed 12-05-2013. Google Scholar

  • [17] Saha BC, Nichols NN, Qureshi N, Cotta MA. Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5. Appl Microbiol Biotechnol 2011;92(4):865-74. Web of ScienceCrossrefGoogle Scholar

  • [18] Fernández-Sandoval MT, Huerta-Beristain G, Trujillo-Martínez B, Bustos P, González V, Bolivar F, Gosset G, Martínez A. Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol 2012;96: 1291-300. Web of ScienceCrossrefGoogle Scholar

  • [19] Qureshi N, Dien BS, Nichols NN, Saha BC, Cotta MA. Genetically engineered Escherichia coli for ethanol production from xylose: substrate and product inhibition and kinetic parameters. Food Bioprod Proc 2006;84(2): 114-22. CrossrefGoogle Scholar

  • [20] Qureshi N, Dien BS, Liu S, Saha BC, Cotta MA, Hughes S,Hector R.. Genetically engineered Escherichia coli FBR5: Part II. Ethanol production from xylose and simultaneous product recovery. Biotechnol Prog 2012;28(5): 1179-85. CrossrefGoogle Scholar

  • [21] Nieves IU, Geddes CC, Miller EN, Mullinnix MT, Hoffman RW, Fu Z, Tong Z, Ingram LO. Effect of reduced sulfur compounds on the fermentation of phosphoric acid pretreated sugarcane bagasse by ethanologenic Escherichia coli. Bioresour Technol 2011;102: 5145–52. Web of ScienceCrossrefGoogle Scholar

  • [22] Li X, Yi J-p, Ren Y-l, Yin W-p. Modeling alcoholic fermentation of glucose/xylose mixtures by ethanologenic Escherichia coli as a function of pH. Ann Microbiol 2014;64: 459-73. CrossrefGoogle Scholar

  • [23] Larsson S, Quintana-Sáinz A, Reimann A, Nilvebrant NO, Jönsson LJ. Influence of lignocellulose-derived aromatic compounds on oxygenlimited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol 2000;84: 617–32. CrossrefGoogle Scholar

  • [24] Lee S, Nam D, Jung JY, Oh MK, Sang BI, Mitchell RJ. Identification of Escherichia coli biomarkers responsive to various lignin-hydrolysate compounds. Bioresour Technol 2012;114: 450–6. CrossrefWeb of ScienceGoogle Scholar

  • [25] Cuevas M, Sánchez S, Bravo V, Cruz N, García JF. Fermentation of enzymatic hydrolysates from olive stones by Pachylosen tannophilus. J Chem Technol Biotechnol 2009;84: 461–7. CrossrefWeb of ScienceGoogle Scholar

  • [26] Romero I, Sánchez S, Moya M, Castro E, Ruiz E, Bravo V. Fermentation of olive tree pruning acid-hydrolysates by Pachysolen tannophilus. Biochem Eng J 2007;36: 108-15. CrossrefWeb of ScienceGoogle Scholar

  • [27] Takahashi CM, de Carvalho Lima KG, Takahashi DF, Alterthum F. Fermentation of sugar cane bagasse hemicellulosic hydrolysate and sugar mixtures to ethanol by recombinant Escherichia coli KO11. World J Microbiol Biotechnol 2000;16: 829–34. CrossrefGoogle Scholar

  • [28] Kim TH, Lee YY, Sunwoo C, Kim JS. Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotechnol 2006;133: 41–57. Google Scholar

  • [29] Nieves IU, Geddes CC, Mullinnix MT, Hoffman RW, Tong Z, Castro E, Shanmugam KT, Ingram LO. Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170. Bioresour Technol 2011;102: 6959–65. CrossrefWeb of ScienceGoogle Scholar

  • [30] Avci A, Saha BC, Kennedy GJ, Cotta MA. Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification. Bioresour Technol 2013;142: 312–19. Web of ScienceGoogle Scholar

  • [31] Girisuta B, Janssen LPBM, Heeres HJ. Kinetic study on the acid-catalyzed. Hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 2007;46(6): 1696-708. Web of ScienceCrossrefGoogle Scholar

  • [32] Morales-Rodriguez R, Gernaey KV, Meyer AS, Sin G. A mathematical model for simultaneous saccharification and co-fermentation (SSCF) of C6 and C5 sugars. Chinese J Chem Eng 2011;19(2): 185-91. Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-09-16

Accepted: 2015-09-21

Published Online: 2016-02-11

Citation Information: Bioethanol, Volume 2, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2016-0002.

Export Citation

© 2016 J.M. Romero-García et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

José A. Rojas-Chamorro, Cristóbal Cara, Inmaculada Romero, Encarnación Ruiz, Juan M. Romero-García, Solange I. Mussatto, and Eulogio Castro
Energy & Fuels, 2018
Encarnación Ruiz, Juan Miguel Romero-García, Inmaculada Romero, Paloma Manzanares, María José Negro, and Eulogio Castro
Biofuels, Bioproducts and Biorefining, 2017
Encarnación Ruiz-Ramos, Juan Miguel Romero-García, Francisco Espínola, Inmaculada Romero, Valentina Hernández, and Eulogio Castro
Education for Chemical Engineers, 2017
José Carlos Martínez-Patiño, Encarnación Ruiz, Inmaculada Romero, Cristóbal Cara, Juan Carlos López-Linares, and Eulogio Castro
Bioresource Technology, 2017, Volume 239, Page 326
Ravinder Kumar and Pradeep Kumar
Frontiers in Microbiology, 2017, Volume 8
Juan Carlos López-Linares, Inmaculada Romero, Cristóbal Cara, and Eulogio Castro
Energy & Fuels, 2016, Volume 30, Number 11, Page 9532
J. M. Romero-García, A. Sanchez, G. Rendón-Acosta, J. C. Martínez-Patiño, E. Ruiz, G. Magaña, and E. Castro
BioEnergy Research, 2016, Volume 9, Number 4, Page 1070

Comments (0)

Please log in or register to comment.
Log in