Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bioethanol

Ed. by Ruiz, Héctor

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-6788
See all formats and pricing
More options …

Steam Explosion for Wheat Straw Pretreatment for Sugars Production

Pablo Alvira / María José Negro / Ignacio Ballesteros / Alberto González / Mercedes Ballesteros
Published Online: 2016-02-11 | DOI: https://doi.org/10.1515/bioeth-2016-0003

Abstract

Development of biofuels such as lignocellulosic ethanol represents a sustainable alternative in the transport sector. Wheat straw is a promising feedstock for bioethanol production in Europe due to its large production and high carbohydrates content. In a process to produce cellulosic ethanol, previous to the enzymatic hydrolysis to obtain fermentable sugars and the subsequent fermentation, a pretreatment step to break down the recalcitrance of lignocellulose fiber is essential. In this work, a range of steam explosion pretreatment conditions were evaluated according to different parameters: sugars recovery, degradation products generation, and enzymatic hydrolysis yields. Moreover, the enzymatic hydrolysis process was also studied at high substrate loadings, since operating at high solids loading is crucial for large scale development of ethanol production. Pretreatment at 200°C - 10 min resulted in higher enzymatic hydrolysis yield (91.7%) and overall glucose yields (35.4 g glucose/100 g wheat straw) but also higher production of toxic compound. In turn, the characteristics of the pretreated wheat straw at lower severity (Log R0=3.65) correspond to 190°C and 10 min, with minimal sugars degradation and toxics formation indicated a great potential for maximizing total sugars production by using optimal enzyme combinations including accessory enzymes in the enzymatic hydrolysis step.

Keywords: Biofuels; steam explosion; wheat straw; pretreatment; enzymatic hydrolysis; sugars recovery; lignocellulosic biomass

References

  • [1] Kim S., Dale B.E., Global potential bioethanol production from wasted crops and crop residues, Biomass Bioenerg., 2004, 26, 361-375. CrossrefGoogle Scholar

  • [2] Tomás-Pejó E., Alvira P., Ballesteros M., Negro M.J., Pretreatment technologies for lignocellulose-to-bioethanol conversion, In: Pandey A., Larroche C., Ricke S.C., Dussap C.G., Gnansounou E., (Eds.), Biofuels: Alternative feedstocks and conversion processes, Academic Press, Amsterdam, 2011. CrossrefGoogle Scholar

  • [3] Avellar B.K., Glasser W.G., Steam assisted biomass fractionation I. Process considerations and economic evaluation, Biomass Bioenerg., 1998, 14, 205-218. CrossrefGoogle Scholar

  • [4] Oliveira, F.M.V., Pinheiro, I.O., Souto-Maior, A.M., Martin, C., Gonçalves A.R., Rocha G.J.M., Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products, Bioresour. Technol., 2013, 130, 168-173. Google Scholar

  • [5] Sharma S., Kumar R., Gaur R, Agrawal R., Gupta R.P., Tuli D.K., Das B, Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw, Bioresour.Technol. , 2015, 175, 350-357. Web of ScienceGoogle Scholar

  • [6] Sun Y., Cheng J., Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol., 2002, 83, 1-11. Google Scholar

  • [7] Jurado M., Prieto A., Martínez-Alcalá A., Martínez A.T., Martínez M.J., Laccase detoxification of steam-exploded wheat straw for second generation bioethanol, Bioresour. Technol., 2009, 100, 6378-6384 Web of ScienceCrossrefGoogle Scholar

  • [8] Palmqvist E., Hahn-Hägerdal B., Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanism of inhibition, Bioresour. Technol., 2000, 74, 25-33. CrossrefGoogle Scholar

  • [9] Overend R.P., Chornet E., Fractionation of lignocellulosics by steam-aqueous pretreatments, Phil. Trans. R. Soc. Lond., 1987, 321, 523-536. Google Scholar

  • [10] Alvira P., Negro M.J., Ballesteros M., Effect of endoxylanase and alpha-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw, Bioresour. Technol., 2011, 102, 4552-4558. Web of ScienceGoogle Scholar

  • [11] Alvira P., Tomás-Pejó E., Negro M.J., Ballesteros M., Strategies of xylanase supplementation for an efficient saccharification and cofermentation process from pretreated wheat straw, Biotechnol. Prog., 2011, 27, 944-950. Web of ScienceCrossrefGoogle Scholar

  • [12] García-Aparicio M., Ballesteros M., Manzanares P., Ballesteros I., González A., Negro M.J., Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw, Appl. Biochem. Biotechnol., 2007, 137-140, 353-365. Web of ScienceGoogle Scholar

  • [13] Ohgren K., Bura R., Saddler J., Zacchi G., Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover, Bioresour. Technol., 2007, 98, 2503-2510. Google Scholar

  • [14] Marcos M., García-Cubero M.T., González-Benito G., Coca M., Bódalo S., Lucas S., Optimization of the enzymatic hydrolysis conditions of steam-exploded wheat straw for maximum glucose and xylose recovery, J. Chem. Technol. Biotechnol., 2013, 88, 237-246. Google Scholar

  • [15] Oliva J.M., Sáez F., Ballesteros I., González A., Negro M.J., Manzanares P., et al., Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus, Appl. Biochem. Biotechnol., 2003, 105, 141-154. Google Scholar

  • [16] Romani A., Garrote G., Ballesteros I., Ballesteros M., Second generation bioethanol from steam exploded Eucalyptus globulus wood, Fuel, 2013, 111, 66-74. Web of ScienceGoogle Scholar

  • [17] Ballesteros I., Ballesteros M., Cara C., Sáez F., Castro E., Manzanares P., et al., Effect of water extraction on sugars recovery from steam exploded olive tree pruning, Bioresour. Technol., 2011, 102, 6611-6616. Web of ScienceGoogle Scholar

  • [18] Chu Q., Yang D., Li X., Ma B., Yu S., Yong Q., An integrated process to enhance ethanol production from stream-exploded corn stover, Fuel, 2013, 107, 823-827 Web of ScienceGoogle Scholar

  • [19] Horn S.J., Nguyen Q.D., Westereng B., Nilsel P.J., Eijsink V.G.H., Screening of steam explosion conditions for glucose production from non-impregnated wheat straw, Biomass Bioenerg., 2011, 35, 4879-4886. CrossrefGoogle Scholar

  • [20] Ballesteros I., Negro M., Oliva J.M., Cabañas A., Manzanares P., Ballesteros M., Ethanol production from steam-explosion pretreated wheat straw, Appl. Biochem. Biotechnol., 2006, 130, 496-508. Google Scholar

  • [21] García-Aparicio M.P., Oliva J.M, Manzanares P., Ballesteros M., Ballesteros I., González A., et al., Second generation ethanol production from exploded barley straw by Kluyveromyces marxianus CETC 10875, Fuel, 2011, 90, 1624-1630. Web of ScienceGoogle Scholar

  • [22] Amores I., Ballesteros I., Manzanares P., Sáez F., Michelena G., Ballesteros M., Ethanol production from sugarcane bagasse pretreated by steam explosion, Electronic Journal of Energy & Environment 2011, 1, 25-36. Google Scholar

  • [23] Manzanares P., Ballesteros I., Negro M.J., Oliva J.M., González A., Ballesteros M., Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content, Biomass Conv. Bioref., 2012, 2, 123-132. CrossrefGoogle Scholar

  • [24] Barta Z., Oliva J.M., Ballesteros I., Dienes D., Ballesteros M., Réczey K., Refining hemp hurds into fermentable sugars or ethanol, Chem. Biochem. Eng., 2010, 24, 331–339. Google Scholar

  • [25] Ballesteros I., Oliva J.M., Sáez F., Negro M.J., Manzanares P., Ballesteros M., Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particle sizes, Process Biochem., 2002, 38, 187-192. CrossrefGoogle Scholar

  • [26] Ghose T.K., Measurement of Cellulase Activities, Pure Appl. Chem., 1987, 59, 257-268. Google Scholar

  • [27] Bailey M.J., Biely P., Poutanen K., Interlaboratory testing of methods for assay of xylanase activity, J. Biotechnol., 1991, 23, 257-270. CrossrefGoogle Scholar

  • [28] Sluiter J.B., Ruiz R.O., Scarlata C.J., Sluiter A.D., Templeton D.W., Compositional analysis of lignocellulosic feedstocks. 1. review and description of methods, J. Agric. Food Chem., 2010, 58, 9043-9053. Web of ScienceGoogle Scholar

  • [29] Alvira P., Moreno A.D., Ibarra D., Sáez F., Ballesteros M., Improving the fermentation performance of Saccharomyces cerevisiae by laccases during ethanol production from steamexploded wheat straw at high substrate loadings, Biotechnol Prog., 2013, 29, 74-82. Web of ScienceGoogle Scholar

  • [30] Alvira P., Tomás-Pejó E., Ballesteros M., Negro M.J., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresour. Technol., 2010, 101, 4851-4861. Google Scholar

  • [31] Montané D., Farriol X., Salvadó J., Jollez P., Chornet E., Application of steam explosion to the fractionation and rapid vapor-phase alkaline pulping of wheat straw, Biomass Bioenerg. 1998, 14, 261-276 CrossrefGoogle Scholar

  • [32] Sun R.C., Sun X.F., Wang S.Q., Zhu W., Wang X.Y., Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood, Ind. Crops Prod., 2002, 15, 179-188. CrossrefGoogle Scholar

  • [33] García-Aparicio M., Ballesteros I., González A., Oliva J.M., Ballesteros M., et al., Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis, Appl. Biochem. Biotechnol., 2006, 129, 278-288. Google Scholar

  • [34] Oliva J.M., Ballesteros I., Negro M.J., Manzanares P., Cabañas A., Ballesteros M., Effect of binary combinations of selected toxic compounds on growth and fermentation of Kluyveromyces marxianus, Biotechnol. Prog., 2004, 20, 715-720. CrossrefGoogle Scholar

  • [35] Palmarola-Adrados B., Galbe M., Zacchi G., Combined steam pretreatment and enzymatic hydrolysis of starch-free wheat fibers, Appl. Biochem. Biotechnol., 2004, 113, 989-1002. Google Scholar

  • [36] Banerjee S., Mudliar S., Sen R., Giri B., Satpute D., Chakrabarti T., et al., Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies, Biofuels Bioprod. Bioref., 2010, 4, 77-93. CrossrefWeb of ScienceGoogle Scholar

  • [37] Mohagheghi A., Tucker M., Grohmann K., Wyman C., High solids simultaneous saccharification and fermentation of pretreated wheat straw to ethanol, Appl. Biochem. Biotechnol., 1992, 33, 67-82. Google Scholar

  • [38] Rosgaard L., Andric P., Dam-Johansen K., Pedersen S., Meyer A.S., Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw, Appl. Biochem. Biotechnol., 2007, 143, 27-40. Web of ScienceGoogle Scholar

  • [39] Taherzadeh M.J., Karimi, K., Fermentation inhibitors in ethanol processes and different strategies to reduce their effects. In: Pandey A., Larroche C., Ricke S.C., Dussap C.G., Gnansounou E., (Eds.), Biofuels: Alternative feedstocks and conversion processes, Academic Press, Amsterdam, 2011. CrossrefGoogle Scholar

  • [40] Moreno, A.D., Tomás-Pejó, E., Ibarra, D., Ballesteros, M., Olsson, L., Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: Effect of laccase supplementation, Biotechnol. Biofuels, 2013, 6 (1), 160. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2014-11-19

Accepted: 2015-08-03

Published Online: 2016-02-11


Citation Information: Bioethanol, Volume 2, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2016-0003.

Export Citation

© 2016 Pablo Alvira et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Jingwen Qiu, Lunjie Ma, Fei Shen, Gang Yang, Yanzong Zhang, Shihuai Deng, Jing Zhang, Yongmei Zeng, and Yaodong Hu
Bioresource Technology, 2017, Volume 238, Page 174
[3]
Hongyan Chen, Jinbao Liu, Xing Chang, Daming Chen, Yuan Xue, Ping Liu, Hualin Lin, and Sheng Han
Fuel Processing Technology, 2017, Volume 160, Page 196
[4]
Munira Zainal Abidin, Maria Paula Junqueira-Gonçalves, Vitaliy V Khutoryanskiy, and Keshavan Niranjan
Journal of Chemical Technology & Biotechnology, 2017
[5]
Cristina Álvarez, Alberto González, Maria José Negro, Ignacio Ballesteros, José Miguel Oliva, and Felicia Sáez
Industrial Crops and Products, 2017, Volume 99, Page 41
[6]
Abdul Waheed Bhutto, Khadija Qureshi, Khanji Harijan, Rashid Abro, Tauqeer Abbas, Aqeel Ahmed Bazmi, Sadia Karim, and Guangren Yu
Energy, 2017, Volume 122, Page 724
[7]
Ana Lourenço, Jorge Gominho, Maria Dolores Curt, Esteban Revilla, Juan Carlos Villar, and Helena Pereira
Industrial & Engineering Chemistry Research, 2017, Volume 56, Number 1, Page 424
[8]
B. Cassells, K. Karhumaa, V. Sànchez i Nogué, and G. Lidén
Applied Biochemistry and Biotechnology, 2017, Volume 181, Number 2, Page 536
[9]
Jorge Rencoret, Antonio Pereira, José C. del Río, Angel T. Martínez, and Ana Gutiérrez
BioEnergy Research, 2016, Volume 9, Number 3, Page 917

Comments (0)

Please log in or register to comment.
Log in