Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bioethanol

Ed. by Ruiz, Héctor

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-6788
See all formats and pricing
More options …

Cellulases by Penicillium sp. in different culture conditions

Leyanis Mesa
  • Corresponding author
  • Department of Biotechnology, School of Engineering of Lorena, University of São Paulo (USP), São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carmen A. Salvador
  • Corresponding author
  • University Center for Research, Science and Technology (Centro Universitario de Investigación, Ciencia y Tecnología - CUICYT). Universidad Técnica del Norte. Ibarra, Ecuador
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mónica Herrera
  • Corresponding author
  • Cuban Research Institute of Sugar Cane Derivatives (Instituto Cubano de Investigación de los Derivados de la Caña de Azúcar - ICIDCA). Havana, Cuba
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daimí I. Carrazana
  • Corresponding author
  • Department of Pharmacy. Faculty of Chemistry- Pharmacy. Central University ‟Marta Abreu” of Las Villas. Villa Clara. Cuba
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Erenio González
  • Corresponding author
  • Center of Process Analysis. Department of Chemical Engineering. Faculty of Chemistry-Pharmacy. Central University „Marta Abreu“ of Las Villas. Villa Clara, Cuba
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-01-29 | DOI: https://doi.org/10.1515/bioeth-2016-0005

Abstract

The high cost of cellulolytic enzymes used in the ethanol production process has led to a growing interest in situ production. The evaluation of the influence of several factors in the fungus Penicillium sp. cellulase production using pretreated sugarcane bagasse is very interesting. Penicillium sp. cellulase production by using filter paper as cellulosic substrate and the use of glucose, sucrose and lactose like co-substrates was assessed. In the experiments using filter paper as a cellulosic substrate, the highest FPase enzyme activity obtained was 280 FPU.L-1 using sucrose as co-substrate. Subsequently, the study of pretreated sugarcane bagasse was conducted using Plackett-Burman experimental design with analysis of 6 factors influencing the process. The highest FPase activity was 615.1 FPU.L-1. The factors influencing FPase and β- glucosidase activity were the use of molasses and the solid loading. The successful use of molasses as co-substrate opens perspectives for future researches.

Keywords: cellulolytic enzymes; Penicillium sp.; sugarcane bagasse; molasses

References

  • [1] Gusakov A.V., Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnol., 2011, 29, 419-425 Google Scholar

  • [2] Balat M., Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energ. Convers. Manage., 2011, 52, 858–875 Web of ScienceCrossrefGoogle Scholar

  • [3] Bhat M.K., Cellulases and related enzymes in biotechnology. Biotechnol. Adv., 2000, 18, 355–383 CrossrefGoogle Scholar

  • [4] Marjamaa K., Toth K., Bromann P.A., Szakacs G., Kruus K., Novel Penicillium cellulases for total hydrolysis of lignocellulosics, Enzyme Microb. Tech., 2013, 52, 358– 369 Web of ScienceGoogle Scholar

  • [5] Krogh K.B., Morkeberg A., Friscad J.C., Olsson L., Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol., 2004, 113, 389–401 Google Scholar

  • [6] Jørgensen H., Mørkeberg A., Krogh K.B., Olsson L., Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb. Technol., 2005, 36,42–48 Google Scholar

  • [7] Sun Y., Liu Z.Y., Zheng K., Song X., Qu Y.B., The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb. Technol., 2008, 42, 560-567 Web of ScienceGoogle Scholar

  • [8] Rao M., Gaikwad S., Mishra C., Deshpande V., Induction and catabolite repression of cellulase in Penicillium funiculosum. Appl. Biochem. Biotechnol., 1988, 19, 129–137 CrossrefGoogle Scholar

  • [9] Qu Y.B., Gao P.J., Wang Z.N., Studies on the cellulase system of Penicilum decumbens. Physiological characters of the mutant JU1 and regulation of its enzymes synthesis. J. Shandong Univ., 1987, 22, 97–103 Google Scholar

  • [10] Ferrer Y., León M., Michelena G., Dustet J.C., Duque A., Ibañez M.L., Tortoló K., Selección de hongos aislados de bagazo de caña con actividad celulasa sobre celulosa cristalina para posibles aplicaciones industriales. ICIDCA, 2011, 45: 3-11 Google Scholar

  • [11] Mandels M., Weber J., The production of cellulases. In Cellulases and their Applications. Advances in Chemistry Series, vol. 95 (ed. R. F. Gould), Washington, DC: American Chemical Society. pp. 391-414, 1969 Google Scholar

  • [12] Nascimento RP., Junior NA., Pereira Jr N., Bon EPS., Coelho RRR., Brewer’s spent grain and corn steep liquor as substrates for cellulolytic enzymes production by Streptomyces malaysiensis. Letters in Applied Microbiology, 2009, 48: 529–535 Web of ScienceCrossrefGoogle Scholar

  • [13] Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., and Crocker D., Determination of structural carbohydrates and lignin in biomass. NREL, 2008 Google Scholar

  • [14] Ghose T.K., Measurementof cellulase activities. Pure & Appl. Chem., 1987, 59, 257-268 CrossrefGoogle Scholar

  • [15] Miller G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 1959, 31, 426-428 CrossrefGoogle Scholar

  • [16] Mandels M., Stemberg D., Andreoti R.E., Growth and cellulase production by Trichoderma. In Proceedings of Symposium on Enzymatic Hydrolysis of Ce/lrdose, eds Bailey, M., Enari, T.M. & Linko, M. pp. 81-109. Helsinki: SITRA, 1975 Google Scholar

  • [17] Saddler, J.N., Screening of highly cellulolytic fungi and the action of their cellulase enzyme system. Enz. Microb. Tech., 1982, 4, 414-418 CrossrefGoogle Scholar

  • [18] Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurement with folin phenol reagent. J. Biol. Chem., 1951,193, 265-275 Google Scholar

  • [19] Mesa L., Gonzalez E., Cara C., Ruiz E., Castro E., Mussatto S., An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. J. Chem. Technol. Biotechnol., 2010, 85, 1092-1098 Web of ScienceCrossrefGoogle Scholar

  • [20] Ghanem N.B., Youssef H., and Mahrouse H.K., Production of Aspergillus terreus xylanase in solid state cultures: application of the Plackett–Burman experimental design to evaluate nutritional requirements. Biores. Technol., 2000, 73, 113-121 Google Scholar

  • [21] Forchiassin F., Papinutti V.L., Lignocellulolytic enzymes from Fomes sclerodermeus growing in solid-state fermentation. J. Food Eng., 2007, 81, 54-59 CrossrefWeb of ScienceGoogle Scholar

  • [22] Mesa L., Morales M., González E., Cara C., Romero I., Castro E., Mussatto S.I., Restructuring the processes for furfural and xylose production from sugarcane bagasse in a biorefinery concept for ethanol production. Chem. Eng. Process., 2014, 85, 196-202 CrossrefWeb of ScienceGoogle Scholar

  • [23] Mesa L., González E., Cara C., González M., Castro E., Mussatto S.I., The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem. Eng. J., 2011, 168, 1157-1162 Web of ScienceGoogle Scholar

  • [24] Steiner J., Socha C., Eyzaguirre J., Culture conditions for enhanced cellulose production by a native strain of Penicillium purpurogenum. World J. Microbiol. Biotechnol., 1994, 10, 280-284 CrossrefGoogle Scholar

  • [25] Ahamed A., Vermette P., Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem. Eng. J., 2008, 40, 399–407 CrossrefGoogle Scholar

  • [26] Kovacs K., Production of cellulolytic enzymes with Trichoderma atroviride mutants for the biomass-to-bioethanol process. PhD Thesis. Lund University, Sweden, 2009 Google Scholar

  • [27] Jørgensen H., Olsson L., Production of cellulases by Penicillium brasilianum IBT 20888—Effect of substrate on hydrolytic performance. Enzyme Microb Technol., 2006, 38, 381–390 Google Scholar

  • [28] Suto M., Tomita F., Induction and catabolite repression mechanisms of cellulase in fungi. J. Biosci. Bioeng., 2001, 92,305-311 CrossrefGoogle Scholar

  • [29] Goldbeck R., Ramos M.M., Pereira G.A.G., Maugeri-Filho F., Cellulase production from a new strain Acremonium strictum isolated from the Braziliam Biome using diferente susbstrates. Biores. Technol., 2013, 128, 797-803 Google Scholar

  • [30] Ling M., Chen G.G., Lin Y.S., Liang Z.Q., Induction of cellulase gene transcription by a novel oligosaccharide: molasses alcohol stillage substance. World J. Microbiol. Biotechnol., 2009, 25,1485–1489 Web of ScienceCrossrefGoogle Scholar

  • [31] He J., Wu A., Chen D., Yu B., Mao X., Zheng P., Yu J., Tian G., Cost-effective lignocellulolytic enzyme production by Trichoderma reesei on a cane molasses medium. Biotechnol. Biof., 2014, 7,43-52 CrossrefGoogle Scholar

  • [32] Lee C.K., Darah I., Ibrahim C.O., Production and optimization of cellulase enzyme using Aspergillus niger USM AI 1 and comparison with Trichoderma reesei via solid state fermentation system. Biotechnol. Res. Int., 2011, 2011, 1-7 CrossrefGoogle Scholar

  • [33] Karmakar M., Ray R.R., Extra cellular endoglucananse production by Rhizopus oryzae in solid and liquid state fermentation of agro wastes. Res. J. Microbiol., 2011, 6, 41–53 Google Scholar

  • [34] Rowell M.R., Pettersen R., Han J.S., Rowell J.S., Tshabalala M.A., Handbook of wood chemistry and wood composites. Cell Wall Chemistry. CRC Press, Chapter 3, p. 487, 2005 Google Scholar

  • [35] Narasimha G., Sridevi A., Buddolla V., Subhosh M., Rajasekhar R.B., Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr. J. Biotechnol., 2006, 5, 472-476 Google Scholar

  • [36] Szijarto N., Szengyel Z., Liden G., Reczey K., Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose. Appl. Biochem. Biotechnol., 2004, 115, 113-116 Google Scholar

  • [37] Maeda N.R., Serpa V.I., Rocha V.A.L., Mesquita R.A.A., Santanna L.M.M., Castro A.M., Driemeier C.E., Pereira N.J., Polikarpor I., Enzymatic hydrolysis of pretreated sugarcane bagasse using Penicilium funiculosum and Trichoderma harzianum cellulases. Process Biochem., 2011, 46, 1196-1201 Web of ScienceCrossrefGoogle Scholar

  • [38] Jørgensen H., Mørkeberg A., Krogh K.B.R., Olsson L., Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulose adsorption by capillary electrophoresis. Enzyme Microb. Technol., 2005, 36, 42–48 Google Scholar

About the article

Received: 2014-02-04

Accepted: 2015-08-03

Published Online: 2016-01-29


Citation Information: Bioethanol, Volume 2, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2016-0005.

Export Citation

© 2016 Leyanis Mesa et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pamella S. Santa-Rosa, Anita L. Souza, Rosemary A. Roque, Edmar V. Andrade, Spartaco Astolfi-Filho, Adolfo J. Mota, and Carlos G. Nunes-Silva
Electronic Journal of Biotechnology, 2017

Comments (0)

Please log in or register to comment.
Log in