Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bioethanol

Ed. by Ruiz, Héctor

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-6788
See all formats and pricing
More options …

Bioethanol production from extracted olive pomace: dilute acid hydrolysis

Maria C. Fernandes
  • Corresponding author
  • Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivone Torrado
  • Corresponding author
  • LNEG– Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
  • Present address: Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Florbela Carvalheiro
  • Corresponding author
  • LNEG– Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vânia Dores
  • Corresponding author
  • LNEG– Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vera Guerra
  • Corresponding author
  • LNEG– Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pedro M. L. Lourenço / Luís C. Duarte
  • Corresponding author
  • LNEG– Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-11 | DOI: https://doi.org/10.1515/bioeth-2016-0007

Abstract

Residues from olive oil industry such as Extracted Olive Pomace (EOP) are potential substrates for bioethanol production. In this work, enzymatic hydrolysis of EOP pretreated by dilute acid hydrolysis (DAH) was assessed, and the enzymatic hydrolysis and bioconversion were carried out both by separate hydrolysis and fermentation (SHF) and pre-saccharification followed by simultaneous saccharification and fermentation (PSSF). DAH led to a significant removal hemicellulose, but the subsequent enzymatic treatments showed that the resulting residue was still partially recalcitrant to cellulase hydrolysis. Size reduction and further treatment of EOP-DAH with an alkaline solution were also tested. Alkaline post-treatment allowed a decrease in lignin content, but had little effect on enzymatic saccharification comparing to size reduction. Hence fermentation study was performed with ground EOP-DAH. The PSSF process showed a relatively higher bioethanol fermentation yield (0.46 gg-1) when compared to the SHF process.

Keywords: Alkaline treatment; Biomass pretreatment; Enzymatic hydrolysis; High solid loading; Sequential Hydrolysis and Fermentation (SHF); Simultaneous Saccharification and Fermentation (SSF)

References

  • [1] Mussatto SI, Dragone G, Guimarães PMR, Silva JPA., Carneiro LM, Roberto IC, et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 2010;28:817–30. CrossrefGoogle Scholar

  • [2] Romero-García JM, Niño L, Martínez-Patiño C, Álvarez C, Castro E, Negro MJ. Biorefinery based on olive biomass. State of the art and future trends. Bioresour Technol 2014;159:421–32. Web of ScienceGoogle Scholar

  • [3] Instituto Nacional de Estatística IP. Estatísticas Agrícolas 2013. Lisboa, Portugal: 2014. Google Scholar

  • [4] Ramos P, Santos SAO, Guerra ÂR, Guerreiro O, Felício L, Jerónimo E, et al. Valorization of olive mill residues: Antioxidant and breast cancer antiproliferative activities of hydroxytyrosolrich extracts derived from olive oil by-products. Ind Crops Prod 2013;46:359–68. Web of ScienceCrossrefGoogle Scholar

  • [5] Anuário Agrícola- Informação de Mercados 2013. Enigma Pre. Lisboa, Portugal: Gabinete de Planeamento e Políticas(GPP/ MAM); 2014. Google Scholar

  • [6] Roig A, Cayuela M, Sánchez-Monedero M. An overview on olive mill wastes and their valorisation methods. Waste Manag 2006;26:960–9. CrossrefGoogle Scholar

  • [7] Vlyssides A. Integrated strategic approach for reusing olive oil extraction by-products. J Clean Prod 2004;12:603–11. CrossrefGoogle Scholar

  • [8] Sánchez Moral P, Ruiz Méndez MV. Production of pomace olive oil. Grasas y Aceites 2006;57:47–55. Google Scholar

  • [9] Tayeh HA, Najami N, Dosoretz C, Tafesh A, Azaizeh H. Potential of bioethanol production from olive mill solid wastes. Bioresour Technol 2014;152:24–30. Google Scholar

  • [10] Abdi N, Hamdache F, Belhocine D, Grib H, Lounici H, Piron D, et al. Enzymatic saccharification of solid residue of olive mill in a batch reactor. Biochem Eng J 2000;6:177–83. CrossrefGoogle Scholar

  • [11] Ballesteros I, Oliva J, Saez F, Ballesteros M. Ethanol production from lignocellulosic byproducts of olive oil extraction. Appl Biochem Biotechnol 2001;91-93:237–52. Google Scholar

  • [12] Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M. Ethanol production from olive oil extraction residue pretreated with hot water. Appl Biochem Biotechnol 2002;98-100:717–32. Google Scholar

  • [13] Georgieva TI, Ahring BK. Potential of agroindustrial waste from olive oil industry for fuel ethanol production. Biotechnol J 2007;2:1547–55. CrossrefGoogle Scholar

  • [14] Haagensen F, Skiadas I, Gavala HN, Ahring BK. Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations. Biomass Bioenergy 2009;33:1643–51. Web of ScienceCrossrefGoogle Scholar

  • [15] Cuevas M, Sánchez S, Bravo V, Cruz N, García JF. Fermentation of enzymatic hydrolysates from olive stones by Pachysolen tannophilus. J Chem Technol Biotechnol 2009;84:461–7. CrossrefWeb of ScienceGoogle Scholar

  • [16] Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro M, Castro E. Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 2008;87:692–700. CrossrefWeb of ScienceGoogle Scholar

  • [17] Manzanares P, Negro MJ, Oliva JM, Saéz F, Ballesteros I, Ballesteros M, et al. Different process configurations for bioethanol production from pretreated olive pruning biomass. J Chem Technol Biotechnol 2011;86:881–7. CrossrefGoogle Scholar

  • [18] Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers Manag 2011;52:858–75. Web of ScienceCrossrefGoogle Scholar

  • [19] Cardona CA, Sánchez OJ. Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 2007;98:2415–57. CrossrefGoogle Scholar

  • [20] Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for Pretreatment of Lignocellulosic Biomass for Ef cient Hydrolysis and Biofuel Production. Ind Eng Chem (Analytical Ed 2009:3713–29. CrossrefGoogle Scholar

  • [21] Ballesteros I, Ballesteros M, Manzanares P, Negro MJ, Oliva JM, Sáez F. Dilute sulfuric acid pretreatment of cardoon for ethanol production. Biochem Eng J 2008;42:84–91. Web of ScienceCrossrefGoogle Scholar

  • [22] Carvalheiro F, Guerra V, Morais RC, Torrado I, Bogel-Lukasik R, Lourenço P, et al. Optimization of dilute acid hydrolysis of extracted olive pomace. 3rd Work. Cost Action C. (UBIOCHEM), 1-3 November, Thessaloniki, Grece, 2012, p. 60. Google Scholar

  • [23] Fernández-Bolaños J, Felizón B, Heredia A, Rodríguez R, Guillén R, Jiménez A. Steam-explosion of olive stones: hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresour Technol 2001;79:53–61. CrossrefGoogle Scholar

  • [24] Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW. Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods. J Agric Food Chem 2010;58:9043–53. CrossrefWeb of ScienceGoogle Scholar

  • [25] Cherubini F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 2010;51:1412–21. Web of ScienceCrossrefGoogle Scholar

  • [26] Fernández-Bolaños J, Felizón B, Heredia A, Guillén R, Jiménez A. Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones. Bioresour Technol 1999;68:121–32. CrossrefGoogle Scholar

  • [27] Brás T, Guerra V, Torrado I, Lourenço P, Carvalheiro F, Duarte LC, et al. Detoxification of hemicellulosic hydrolysates from extracted olive pomace by diananofiltration. Process Biochem 2014;49:173–80. Web of ScienceCrossrefGoogle Scholar

  • [28] Fernandes MC, Dores V, Lourenço PM, Viegas M, Carvalheiro F, Duarte LC. Pretreatment of extracted olive pomace for bioethanol production. I - Autohydrolysis. II Congr. Iberoam. sobre Biorrefinerías (2-CIAB)-Proceedings Book, 10-12 Abril 2013, Jaen, España, 2013, p. 21–8. Google Scholar

  • [29] Tai C, Keshwani D. Impact of pretreatment with dilute sulfuric acid under moderate temperature on hydrolysis of corn stover with two enzyme systems. Appl Biochem Biotechnol 2014;172:2628–39. Web of ScienceGoogle Scholar

  • [30] Sindhu R, Kuttiraja M, Binod P, Janu KU, Sukumaran RK, Pandey A. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresour Technol 2011;102:10915–21. CrossrefGoogle Scholar

  • [31] Ferro MD, Fernandes MC, Paulino AFC, Prozil SO, Gravitis J, Evtuguin D V., et al. Bioethanol production from steam explosion pretreated and alkali extracted Cistus ladanifer (rockrose). Biochem Eng J, 2015;104:98-105. Web of ScienceCrossrefGoogle Scholar

  • [32] Fernandes MC, Ferro MD, Paulino AFC, Mendes J A. S, Gravitis J, Evtuguin D V., et al. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour Technol 2015;186:309–15. Google Scholar

  • [33] Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons B A., Blanch HW. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 2012;109:1083–7. CrossrefGoogle Scholar

  • [34] Cannella D, Peroni C, Bravi M. Optimization of the enzymatic treatment of olive oil pomace for lignocellulosic ethanol production. Chem Eng Trans 2010;20:25–30. Google Scholar

  • [35] Rodríguez G, Rodríguez R, Jiménez A, Guillén R, Fernandez- Bolaños J. Effect of steam treatment of alperujo on the composition, enzymatic saccharification, and in vitro digestibility of alperujo. J Agric Food Chem 2007;55:136–42. CrossrefGoogle Scholar

About the article

Received: 2014-12-23

Accepted: 2015-09-08

Published Online: 2016-02-11


Citation Information: Bioethanol, Volume 2, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2016-0007.

Export Citation

© 2016 Maria C. Fernandes et al. . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maria C. Fernandes, Miguel D. Ferro, Ana F.C. Paulino, Humberto T. Chaves, Dmitry V. Evtuguin, and Ana M.R.B. Xavier
Industrial Crops and Products, 2018, Volume 111, Page 633
[2]
Encarnación Ruiz, Juan Miguel Romero-García, Inmaculada Romero, Paloma Manzanares, María José Negro, and Eulogio Castro
Biofuels, Bioproducts and Biorefining, 2017

Comments (0)

Please log in or register to comment.
Log in