Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bioethanol

Ed. by Ruiz, Héctor

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-6788
See all formats and pricing
More options …

Alkaline pretreatment for practicable production of ethanol and xylooligosaccharides

Viviane Marcos Nascimento
  • Corresponding author
  • Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE, Giuseppe Máximo Scolfaro Street, 10.000 Campinas - S.P., Brazil PO Box 6170, ZC 13083-970
  • Graduate Program in Chemical Engineering - Federal University of São Carlos - PPGEQ-UFSCar, PO Box 676, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anny Manrich
  • Corresponding author
  • Graduate Program in Chemical Engineering - Federal University of São Carlos - PPGEQ-UFSCar, PO Box 676, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paulo Waldir Tardioli
  • Corresponding author
  • Graduate Program in Chemical Engineering - Federal University of São Carlos - PPGEQ-UFSCar, PO Box 676, São Carlos, São Paulo, Brazil
  • Chemical Engineering Department - Federal University of São Carlos, DEQ-UFSCar, PO Box 676, ZC 13565-905, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roberto de Campos Giordano
  • Corresponding author
  • Graduate Program in Chemical Engineering - Federal University of São Carlos - PPGEQ-UFSCar, PO Box 676, São Carlos, São Paulo, Brazil
  • Chemical Engineering Department - Federal University of São Carlos, DEQ-UFSCar, PO Box 676, ZC 13565-905, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ George Jackson de Moraes Rocha
  • Corresponding author
  • Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE, Giuseppe Máximo Scolfaro Street, 10.000 Campinas - S.P., Brazil PO Box 6170, ZC 13083-970
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raquel de Lima Camargo Giordano
  • Corresponding author
  • Graduate Program in Chemical Engineering - Federal University of São Carlos - PPGEQ-UFSCar, PO Box 676, São Carlos, São Paulo, Brazil
  • Chemical Engineering Department - Federal University of São Carlos, DEQ-UFSCar, PO Box 676, ZC 13565-905, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-19 | DOI: https://doi.org/10.1515/bioeth-2016-0008

Abstract

The economics for production of secondgeneration (2G) ethanol from sugarcane bagasse in large scale, competing with the cogeneration of electric energy, is still not consolidated. In this scenario, the key for feasibility may be the biorefinery concept, a multiproduct industry using biomass fractions to produce energy, chemicals and by-products. Xylooligosaccharides (XOS) are oligomers of xylose often used as additives in food, animal feeds, and drugs. The effect of NaOH pretreatment on the recovery of xylan for XOS production from sugarcane bagasse under different conditions, namely 121°C, 4-7% NaOH loading, was investigated. The best condition was 4% NaOH and 60 min of reaction, achieving 55% of xylan extraction, without monomer production. In order to produce XOS, soluble and immobilized xylanases were used to hydrolyze commercial birchwood xylan (as control) and the sugarcane bagasse xylan. The immobilized endoxylanase produced XOS with 37% of xylobiose and 20% of xylotriose (w/w). The small production of xylose clearly indicated the purity of the xylan extracted from sugarcane bagasse. The biocatalyst had more than 90% of its activity preserved after 5 reaction cycles. The results showed the suitability of sugarcane bagasse as a raw material for production of ethanol and of XOS using immobilized xylanase.

Keywords: Sugarcane bagasse; xylooligosaccharides; 2G bioethanol; NaOH pretreatment; xylanase; immobilized enzyme

References

  • [1] CONAB - Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de cana-de-açúcar – Safra 2014/2015, Brasília, 2015, 1, 1-29, Available from: http://www. conab.gov.br, accessed in August 13, 2015. Google Scholar

  • [2] Pandey A., Nigan P., Soccol C.R.., Soccol V.T., Singh D., Mohan R., Advances in microbial amylases, Biotechnol. Appl. Biochem., 2000, 31, 135-152. CrossrefGoogle Scholar

  • [3] Rocha G.J.M., Martín C., Silva V.F.N., Gómez E. O., Gonçalves, A.R., Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification, Bioresour. Technol., 2012, 111, 447-452. Google Scholar

  • [4] Furlan F.F., Tonon R., Pinto F.H.P.B., Costa C.B.B., Cruz A.J.G., Giordano R.L.C., Giordano R.C., Bioelectricity versus bioethanol from sugarcane bagasse: is it worth to be flexible? Biotechnol. Biofuels, 2013, 6, 142, 1-12. CrossrefGoogle Scholar

  • [5] Bragatto J., Segato F., Squina F.M., Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis, Ind. Crops Prod., 2013, 51, 123-129. CrossrefGoogle Scholar

  • [6] Chandel A.K., Antunes F.A.F., Silva M.B., da Silva, S.S., Unraveling the structure of sugarcane bagasse after soaking in concentrated aqueous ammonia (SCAA) and ethanol production by Scheffersomyces (Pichia) stipitis, Biotechnol. Biofuels, 2013, 6, 102, 1-11. CrossrefGoogle Scholar

  • [7] Aachary A.A., Prapulla S.G., Xylooligosaccharides (XOS) as an emerging prebiotics: Microbial synthesis, utilization, structural characterization, bioactive properties, and applications, Compr. Rev. Food. Sci. Food. Saf., 2011, 10, 2-16. CrossrefGoogle Scholar

  • [8] Gullón P., González-Muñoz M.J., Parajó, J.C., Manufacture and prebiotic potential of oligosaccharides derived from industrial solid wastes, Biores. Technol., 2011, 102, 6112-6119. Google Scholar

  • [9] FAO - Food and Agriculture Organization of the United Nations. FAO technical meetings on prebiotics: food quality and standards service (AGNS). Rome: Food and Agricultural Org. Available from: www.fao.org/ag/agn/agns/index_en.stm. p 1–11, acessed in: jan, 20th 2014. Google Scholar

  • [10] Roberfroid M., Prebiotic: The concept revisited, J. Nutr., 2007,137, 830S-837S. Google Scholar

  • [11] Tuohy K. M., Rouzaud G.C., Brück W.M., Gibson G.R., Modulation of the human gut microflora towards improved health using prebiotics--assessment of efficacy, Curr. Pharm. Des., 2005, 11(1), 75-90. CrossrefGoogle Scholar

  • [12] Rycroft, C.E., Jones M.R., Gibson G.R., Rastall R.A., A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microbiol. 2001, 91(5),878 887. CrossrefGoogle Scholar

  • [13] Samanta A.K., Jayapal N., Senani S., Kotle A.P., Sridhar M., Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora, Braz. J. Microbiol., 2013, 44(1), 1-14. CrossrefGoogle Scholar

  • [14] Carrasco C., Baudel H.M., Sendelius J., Modig T., Roslander C., Galbe M., et al., SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse, Enzyme Microb. Technol., 2010, 46 (2), 64-73. Google Scholar

  • [15] Wyman, C. E., What is (and is not) vital to advancing cellulosic ethanol. Trends in Biotechnology, 2007, 25 (4), 153–157. Google Scholar

  • [16] Qing, Q., Li, H.,Kumar, R., Wyman, C. E. Xylooligosaccharides Production, Quantification, and Characterization in Context of Lignocellulosic Biomass Pretreatment- Chapter 19: In: Wyman, C. E., Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals , Wiley Series, 2013. Google Scholar

  • [17] Somerville, C., Youngs, H., Taylor, C., Davis, S. C., Long, P. S. Feedstocks for lignocellulosic biofuels. Science, 2010, 329 (5993), 790-792. Google Scholar

  • [18] Garrote, G., Dominguez, H., Parajo, J. C.. Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharides production. J Food Eng, 2002, 52, 211–218. CrossrefGoogle Scholar

  • [19] Kabel, M. A., Carvalheiro, F., Garrote, G., Avgerinos, E., Koukios E, Parajo, J. C., et al., Hydrothermally treated xylan rich by-products yield different classes of xylooligosaccharides. Carbohydr Polym, 2002, 50, 47–56. Google Scholar

  • [20] Liu J., Zhou P., Liu H., Wu K., Xiao W., Gong Y., Lin J., Liu Z, Ethanol production from xylan-removed sugarcane bagasse using low loading of commercial cellulase, Bioresour. Technol., 2014, 163, 390-394. Google Scholar

  • [21] Mirahmadi K., Kabir M.M., Jeihanipour A., Karimi K., Taherzadeh M.J, Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production, Bioresources, 2010, 5(2), 928-938. Google Scholar

  • [22] Zhu J., Zhu Y., Jiang F., Xu Y., Ouyang J., Yu S., An integrated process to produce ethanol, vanillin, and xylooligosaccharides from Camellia oleifera shell, Carbohydrate Research, 2013, 382, 52-57. Google Scholar

  • [23] Jayapal N., Samanta, A.K., Kolte A.P., Senani S., Sridhar, M., Suresh, K.P et al., Value addition to sugarcane bagasse: Xylan extraction and its process optimization for xylooligosaccharides production, Ind. Crops Prod., 2013, 42, 14-24. CrossrefGoogle Scholar

  • [24] Saha B.C, Hemicellulosic Bioconversion, J. Ind. Microbiol. Biotechnol., 2003, 30, 279-291. CrossrefGoogle Scholar

  • [25] Sharma M., Kumar A., Xylanases: An Overview, Br. Biotechnol. J., 2013, 3 (1), 1-28. Google Scholar

  • [26] Polizelli, M. L., Rizzatti, A.C., Monti, R., Terenzi, H.F., Jorge, J. A., Amorim, D. S., Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67(2005), 577-591. CrossrefGoogle Scholar

  • [27] Manrich A., Galvão C. M., Jesus C.D., Giordano R.C., Giordano, R.L., Immobilization of trypsin on chitosan gels: use of different activation protocols and comparison with other supports, Int. J. Biol. Macromol., 2008, 43, 54-61. CrossrefGoogle Scholar

  • [28] Manrich A., Komesu A., Adriano W.S., Tardioli P.W., Giordano, R.L.C., Immobilization and stabilization of xylanase by multipoint covalent attachment on agarose and on chitosan supports, Appl. Biochem. Biotechnol., 2010, 161, 455-467. Google Scholar

  • [29] López-Gallego F., Montes T., Fuentes M., Alonso N., Grazu V., Betancor, L., et al., Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports, J. Biotechnol ., 2005, 116, 1-10. Google Scholar

  • [30] Mateo C., Grazu V., Palomo J. M., Lopez-Gallego F., Fernandez- Lafuente R., Guisan J.M. Immobilization of enzymes on heterofunctional epoxy supports, Nature Protocols, 2007, 2 (5), 1022-1033. CrossrefGoogle Scholar

  • [31] Gouveia E.R., Nascimento R.T., Souto-Maior A.M, Rocha G.J.M., Validação de metodologia para caracterização química de bagaço de cana-de-açúcar, Química Nova, 2009, 32, 1500-1503. Google Scholar

  • [32] Rocha G.J.M., Silva F.T., Araújo G.T., Curvelo A.A.S., A fast and accurate method for determination of cellulose and polyoses by HPLC. In: Proceedings of the V Brazilian Symposium on the Chemistry of Lignin and Other Wood Components (1997, Curitiba, Brazil), Brazil, 1997, 5, 113-115. Google Scholar

  • [33] Laver M.L., Wilson, K.P., Determination of carbohydrates in wood pulp products, Tappi J., 1993, 76 (6), 155-158. Google Scholar

  • [34] Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton, D., Determination of sugars, byproducts, and degradation products in liquid fraction process samples, National Renewable Energy Laboratory, 2008. Google Scholar

  • [35] Yang B., Wyman, C.E., Characterization of the degree of polymerization of xylooligomers produced by flow through hydrolysis of pure xylan and corn stover with water, Bioresour. Technol, 2008, 99, 5756-5762. Google Scholar

  • [36] G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 1959, 31, 426-428. CrossrefGoogle Scholar

  • [37] Guisán J. M., Agarose-aldehyde gels as supports for immobilization- stabilization of enzymes, Enzyme Microb. Technol., 1988, 10, 375-382. Google Scholar

  • [38] Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, 1976, 72, 248-254. Google Scholar

  • [39] Ghose T.K., Measurement of Cellulase Activities. Pure Appl. Chem, 1987, 59, 257-268. Google Scholar

  • [40] Narciso G. V., Simionato K. P., Arruda P. V., Sene L., Felipe M. G. A., Palha de sorgo: Biomassa lignocelulósica potencial para utilização em bioprocessos que envolvem o aproveitamento da fração hemicelulósica, In: XVII Simpósio Nacional de Bioprocessos (05-09 Agosto 2009, Natal, Brazil), 2009. Google Scholar

  • [41] Rocha G.J.M., Martin C., Soares I.B., Souto Maior A.M., Baudel H.M., Moraes, C.A., Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production, Biomass Bioenergy, 2011, 35, 663-670. CrossrefGoogle Scholar

  • [42] Doner L.W., Hicks, K.B., Isolation of Hemicellulose from Corn Fiber by Alkaline Hydrogen Peroxide Extraction, Cereal Chem., 1997, 74 (2), 176-181. CrossrefGoogle Scholar

  • [43] Fengel, D., Wegener, G., Wood: Chemistry Ultrastructure, Reactions. Walter de Gruyter, Berlin, 1989. Google Scholar

  • [44] Syed, H. U., Nebamoh, I.P., Germgård, U. A comparison of cold and hot caustic extraction of a spruce dissolving sulfite pulp prior to final bleaching. Appita, Vol 66 No 3, 229-233, ,2013 Google Scholar

  • [45] Kuo, Y-N, Hong, J. Investigation of solubility of microcrystalline cellulose in aqueous NaOH. Polym. Adv. Technol. 2005; 16: 425–428 CrossrefGoogle Scholar

  • [46] Quing, Q., Yang, B., Wyman, C., Xylo-oligomers are strong inhibitors of cellulose hydrolysis by enzymes,” Bioresc. Technol., 2010, 101(24), 9624-9630. Google Scholar

  • [46] Qing, Q., Li, H., Kumar, R., Wyman, C. E., Xylooligosaccharides Production, Quantification, and Characterization in Context of Lignocellulosic Biomass Pretreatment: In Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals , First Edition. Edited by Charles E. Wyman, 2013, pp. 391-415. Google Scholar

  • [47] Milessi, T. S. S., Kopp, W., Rojas, M.J., Manrich, A., Baptista- Neto, A., Tardioli, P.W., Giordano, R.C., Fernandez-Lafuente, R., Guisan, J.M., Giordano, R.L.C. Immobilization and stabilization of an endoxylanase from Bacillus subtillis (XynA) for xylooligosaccharides (XOs) production. Catalysis Today, 2015, in press Google Scholar

  • [48] Jorgensen, H; Olsson, L. Production of cellulases by Penicillium brasilianum. IBT 20888- Effect of substrate on hydrolytic performance, v. 38, p. 381-390, 2006. Google Scholar

  • [49] Lu, Y. P; Yang B; Gregg D; Saddler J.N; Mansfield S.D. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Applied Biochemistry and Biotechnology, v. 98, p. 641-654, 2002 Google Scholar

  • [50] Berlin, A; Gilkes, N; Kilburn, D; Bura, R; Markov, A; Skomarovsky, A; Okunev, O; Gusakov, A; Maximenko, V; Gregg, D; Sinitsyn, A; Saddler, J. Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substratesevidence for the role of accessory enzymes. Enzyme and Microbial Technology, v. 37, p. 175-184, 2005. Google Scholar

  • [51] Weiss N., Börjesson J., Saaby L., Meyer P., Meyer A. S., Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling, Biotechnol. Biofuels, 2013, 6:5. Google Scholar

  • [52] Rocha, G.J.M., Nascimento, V.M., Silva, V.F.N.D., Corso, D.L.S., Gonc¸ alves, A.R., 2014.Contributing to the environmental sustainability of the second generationethanol production: delignification of sugarcane bagasse with sodiumhydroxide recycling. Ind. Crops Prod. 59, 63–68. Google Scholar

About the article

Received: 2014-11-24

Accepted: 2015-11-04

Published Online: 2016-02-19


Citation Information: Bioethanol, Volume 2, Issue 1, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2016-0008.

Export Citation

© 2016 Viviane Marcos Nascimento et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in