Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bioethanol

Ed. by Ruiz, Héctor

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-6788
See all formats and pricing
More options …

Optimization of the laccase detoxification step in hybrid hydrolysis and fermentation processes from wheat straw by K. marxianus CECT 10875

Alfredo Oliva-Taravilla
  • Corresponding author
  • IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit, 28935 Móstoles, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elia Tomás-Pejó
  • Corresponding author
  • IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit, 28935 Móstoles, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marie Demuez
  • Corresponding author
  • IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit, 28935 Móstoles, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristina González-Fernández
  • Corresponding author
  • IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit, 28935 Móstoles, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mercedes Ballesteros
  • Corresponding author
  • IMDEA Energy Institute, Biotechnological Processes for Energy Production Unit, 28935 Móstoles, Spain
  • CIEMAT, Renewable Energy Division, Biofuels Unit, 28040 Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-29 | DOI: https://doi.org/10.1515/bioeth-2016-0009

Abstract

The addition of laccase enzymes reduces the amount of phenols present in lignocellulosic pretreated materials and increases their fermentability. However, laccase addition in combination with cellulases reduces hydrolysis yields. In this work, hybrid hydrolysis and fermentation (HHF) configuration allowed overcoming the negative effect of laccase treatment on enzymatic hydrolysis. Furthermore, the effects of different laccase dosages, length of detoxification time and inoculum size on ethanol production were evaluated. In the evaluated configurations, the different laccase dosages did not show any significant effect on enzymatic hydrolysis. The lowest laccase dosage (0.5 IU/g DW) removed ~70% of total phenols which was enough to reach the highest ethanol production yields (~10 g/L) using K. marxianus CECT 10875. Shorter detoxification times and larger inoculum sizes had a positive impact on both ethanol production and volumetric productivity. These optimal detoxification conditions enable the fermentation of inhibitory slurries by reducing the overall time and cost of the process.

Keywords: Wheat straw; slurry; laccase detoxification; thermotolerant yeast; HHF process

References

  • [1] Galbe M., Zacchi G., Pretreatment: The key to efficient utilization of lignocellulosic materials, Biomass Bioenerg., 2012, 46,70-78 Web of ScienceGoogle Scholar

  • [2] Alvira P., Tomás-Pejó E., Ballesteros M., Negro M.J., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresour. Technol., 2010, 101,4851-4861 Google Scholar

  • [3] Camargo D., Gomes S.D., Sene L., Ethanol production from sunflower meal biomass by simultaneous saccharification and fermentation (SSF) with Kluyveromyces marxianus ATCC 36907, Bioprocess Biosyst. Eng., 2014, 37,2235-2242 Google Scholar

  • [4] Oliva J.M., Negro M.J., Sáez F., Ballesteros I., Manzanares P., González A., Ballesteros M., Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus, Process Biochem., 2006, 41,1223-1228 Google Scholar

  • [5] Palmqvist E., Hahn-Hägerdal B., Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification, Bioresour. Technol., 2000, 74,17-24 Google Scholar

  • [6] Moreno A.D., Ibarra D., Ballesteros I., González A., Ballesteros M., Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase, Bioresour. Technol., 2013a, 135,239-245 Google Scholar

  • [7] Yu Y., Feng Y., Xu C., Liu J., Li D., Onsite bio-detoxification of steam-exploded corn stover for cellulosic ethanol production, Bioresour. Technol., 2011, 102,5123-5128 Web of ScienceGoogle Scholar

  • [8] Moreno A.D., Tomás-Pejó E., Ibarra D., Ballesteros M., Olsson L., In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies, Bioresour. Technol., 2013b, 143,337-343 Web of ScienceGoogle Scholar

  • [9] Oliva-Taravilla A., Moreno A.D., Demuez M., Ibarra D., Tomás-Pejó E., González-Fernández C., Ballesteros M., Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw, Bioresour. Technol., 2015a, 175,209-215 Google Scholar

  • [10] Oliva-Taravilla A., Tomás-Pejó E., Demuez M., González-Fernández C., Ballesteros M., Inhibition of cellulose enzymatic hydrolysis by laccase-derived compounds from phenols, Biotechnol. Progr., 2015b, 31,700-706 Web of ScienceGoogle Scholar

  • [11] Horn S.J., Vaaje-Kolstad G., Westereng B, Eijsink V.G.H., Novel enzymes for the degradation of cellulose, Biotechnol. Biofuels, 2012, 5 Web of ScienceGoogle Scholar

  • [12] Varga E., Klinke H., Réczey K., Thomsen A., High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol, Biotechnol. Bioeng., 2004, 88,567-574 Google Scholar

  • [13] Shanmugam S., Balasubramaniyan B., Jayaraman J., Ramanujam P.K., Gurunathan B., Simultaneous saccharification and fermentation of bioethanol from softwood Moringa oleifera using thermo-tolerant yeast Kluyveromyces marxianus MTCC 1388, Int. J. ChemTech. Res, 2014, 6,5118-5124 Google Scholar

  • [14] Tomás-Pejó E., Oliva J.M., González A., Ballesteros I., Ballesteros M., Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process, Fuel, 2009, 88,2142-2147 Web of ScienceGoogle Scholar

  • [15] Ballesteros I., Negro M.J., Oliva J.M., Cabañas A., Manzanares P., Ballesteros M., Ethanol production from steam-explosion pretreated wheat straw, Appl. Biochem. Biotechnol., 2006, 130,496-508 Google Scholar

  • [16] Ballesteros I., Ballesteros M., Cabañas A., Carrasco J., Martín C., Negro M.J., Sáez F., Sáez R., Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Appl. Biochem. Biotechnol., 1991, 28, 307-315 Google Scholar

  • [17] Sluiter J.B., Ruiz R.O., Scarlata C.J., Sluiter A.D., Templeton D.W., Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods, J. Agric. Food Chem., 2010, 58,9043-9053 Web of ScienceGoogle Scholar

  • [18] Tomás-Pejó E., Alvira P., Ballesteros M., Negro M.J., Pretreatment technologies for lignocellulose-to-bioethanol conversion, in: Biofuels, 2011, 149-176 CrossrefGoogle Scholar

  • [19] Ximenes E., Kim Y., Mosier N., Dien B., Ladisch M., Deactivation of cellulases by phenols, Enzyme Microb. Technol., 2011, 48,54-60 Web of ScienceGoogle Scholar

  • [20] Ximenes E., Kim Y., Mosier N., Dien B., Ladisch M., Inhibition of cellulases by phenols, Enzyme Microb. Technol., 2010, 48,170-176 Web of ScienceGoogle Scholar

  • [21] Kim Y., Ximenes E., Mosier N.S., Ladisch M.R., Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass, Enzyme Microb. Technol., 2011, 48,408-415 Web of ScienceGoogle Scholar

  • [22] García-Aparicio M.P., Ballesteros I., González A., Oliva J.M., Ballesteros M., Negro M.J., Effect of Inhibitors Released During Steam-Explosion Pretreatment of Barley Straw on Enzymatic Hydrolysis, Appl. Biochem. Biotechnol., 2006, 129,278-288 Google Scholar

  • [23] Jönsson L.J., Alriksson B., Nilvebrant N., Bioconversion of lignocellulose: inhibitors and detoxification, Biotechnol. Biofuels, 2013, 6,16 Web of ScienceGoogle Scholar

  • [24] Larsson S., Quintana-Sáinz A., Reimann A., Nilvebrant N., Jönsson L.J., Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae, Appl. Biochem. Biotechnol., 2000, 84,617-632 Google Scholar

  • [25] Nguyen T.T.M., Iwaki A., Ohya Y., Izawa S., Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae, J. Biosci. Bioeng., 2014, 117,33-38 Web of ScienceGoogle Scholar

  • [26] Klinke H.B., Olsson L., Thomsen A.B., Ahring B.K., Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: Wet oxidation and fermentation by yeast, Biotechnol. Bioeng, 2003, 81,738–747 Google Scholar

  • [27] Moreno A.D., Ibarra D., Ballesteros I., Fernández J.L., Ballesteros M., Ethanol from laccase-detoxified lignocellulose by the thermotolerant yeast Kluyveromyces-Effects of steam pretreatment conditions, process configurations and substrate loadings, Biochem. Eng. J., 2013c 79,94-103 Web of ScienceGoogle Scholar

  • [28] Dien B.S., Ximenes E.A., O’Bryan P.J., Moniruzzaman M., Li X.L., Balan V., Dale B., Cotta M.A., Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol, Bioresour. Technol., 2008, 99,5216-5225 Google Scholar

  • [29] García-Conesa M.T., Kroon P.A., Ralph J., Mellon F.A., Colquhoun I.J., Saulnier L.,Thibault J.F., Williamson G., A cinnamoyl esterase from Aspergillus niger can break plant cell wall cross-links without release of free diferulic acids, Eur. J. Biochem., 1999, 266,644-652 Google Scholar

  • [30] Kunamneni A., Ghazi I., Camarero S., Ballesteros A., Plou F.J., Alcalde M., Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers, Process. Biochem., 2008, 43,169–178 Web of ScienceGoogle Scholar

  • [31] Juhasz T., Szengyel Z., Reczey K., Siika-Aho M., Viikari L., Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources, Process. Biochem., 2005, 40,3519-3525 Google Scholar

  • [32] Rugthaworn R., Murata Y., Machida M., Apiwatanapiwat W., Hirooka A., Thanapase W., Dangjarean H., Ushiwaka S., Morimitsu K., Kosugi A., Arai T., Vaithanomsat P., Growth inhibition of thermotolerant yeast, Kluyveromyces marxianus, in hydrolysates from cassava pulp, Appl. Biochem. Biotechnol., 2014, 173,1197–1208 Web of ScienceGoogle Scholar

  • [33] Tomás-Pejó E., Olsson L., Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates, Microb. Biotechnol., 2015, 8,999-1005 Web of ScienceGoogle Scholar

  • [34] Zhao X., Moates G.K., Elliston A., Wilson D.R., Coleman M.J., Waldron K.W., Simultaneous saccharification and fermentation of steam exploded duckweed: Improvement of the ethanol yield by increasing yeast titre, Bioresour. Technol., 2015, 194,263-269 Google Scholar

  • [35] Hasunuma T., Sanda T., Yamada R., Yoshimura K., Ishii J., Kondo A., Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae, Microb. Cell. Fact., 2011, 10 Web of ScienceGoogle Scholar

About the article

Received: 2016-02-09

Accepted: 2016-04-12

Published Online: 2016-06-29


Citation Information: Bioethanol, Volume 2, Issue 1, Pages 126–133, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2016-0009.

Export Citation

© 2016 Alfredo Oliva-Taravilla et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
E. Tomás-Pejó, J. Fermoso, E. Herrador, H. Hernando, S. Jiménez-Sánchez, M. Ballesteros, C. González-Fernández, and D.P. Serrano
Fuel, 2017, Volume 199, Page 403

Comments (0)

Please log in or register to comment.
Log in