Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Ed. by Ruiz, Héctor

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Ethanol production from brown seaweed using non-conventional yeasts

Oluwatosin Obata
  • Corresponding author
  • Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, Scotland, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joseph Akunna
  • Corresponding author
  • School of Science, Engineering & Technology, Abertay University, Bell Street, Dundee DD1 1HG, Scotland, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heike Bockhorn
  • Corresponding author
  • DuPont Nutrition & Health, Danisco Deutschland GmbH, Busch-Johannsen-Str. 1, D – 25899, Niebüll, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Graeme Walker
  • Corresponding author
  • School of Science, Engineering & Technology, Abertay University, Bell Street, Dundee DD1 1HG, Scotland, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-29 | DOI: https://doi.org/10.1515/bioeth-2016-0010


The use of macroalgae (seaweed) as a potential source of biofuels has attracted considerable worldwide interest. Since brown algae, especially the giant kelp, grow very rapidly and contain considerable amounts of polysaccharides, coupled with low lignin content, they represent attractive candidates for bioconversion to ethanol through yeast fermentation processes. In the current study, powdered dried seaweeds (Ascophylum nodosum and Laminaria digitata) were pre-treated with dilute sulphuric acid and hydrolysed with commercially available enzymes to liberate fermentable sugars. Higher sugar concentrations were obtained from L. digitata compared with A. nodosum with glucose and rhamnose being the predominant sugars, respectively, liberated from these seaweeds. Fermentation of the resultant seaweed sugars was performed using two non-conventional yeast strains: Scheffersomyces (Pichia) stipitis and Kluyveromyces marxianus based on their abilities to utilise a wide range of sugars. Although the yields of ethanol were quite low (at around 6 g/L), macroalgal ethanol production was slightly higher using K. marxianus compared with S. stipitis. The results obtained demonstrate the feasibility of obtaining ethanol from brown algae using relatively straightforward bioprocess technology, together with non-conventional yeasts. Conversion efficiency of these non-conventional yeasts could be maximised by operating the fermentation process based on the physiological requirements of the yeasts.

Keywords: Fermentation; non-conventional yeasts; Ascophylum nodosum; Laminaria digitata


  • [1] Hughes, A. D. Kelly, M. S. Black, K. D. and. Stanley M. S, Biogas from Macroalgae: is it time to revisit the idea? Biotechnol. Biofuels, 2012. 5, 86-93, CrossrefWeb of ScienceGoogle Scholar

  • [2] Schiener, P. Black, K. D. Stanley, M. S. and Green, D. H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta, J. Appl. Phycol., 2014, 27, 363–373. Web of ScienceGoogle Scholar

  • [3] Adams, J. M. M. T. A. Toop, I. S. Donnison, and J. a. Gallagher, Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels, Bioresour. Technol., 2011, 102, 9976–9984,. Web of ScienceCrossrefGoogle Scholar

  • [4] Goh C. S. and Lee, K. T. A visionary and conceptual macroalgaebased third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development, Renew. Sustain. Energy Rev., 2010, 14, 842–848. CrossrefGoogle Scholar

  • [5] Black, W. A. P. The seasonal variation in weight and chemical composition of the common British Laminariaceae, Scottish Seaweed Research Association, 1950, 45-72. Google Scholar

  • [6] Adams, J. M. M. Ross, A. B. Anastasakis, K. Hodgson, E. M. Gallagher, J. A.. Jones, J. M and Donnison, I. S. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion, Bioresour. Technol., 2011, 102, 226–234. CrossrefWeb of ScienceGoogle Scholar

  • [7] Sung-Soo J. and Wakisaka, M. l-lactic acid production from brown seaweed (Laminaria japonica Areschoug) Extract, J. Biosci. Bioeng., 2009, 108, S133. CrossrefWeb of ScienceGoogle Scholar

  • [8] Wei, N. Quarterman, J. and Jin, Y. S. Marine macroalgae: An untapped resource for producing fuels and chemicals, Trends Biotechnol., 2013, 31, 70–77. CrossrefWeb of ScienceGoogle Scholar

  • [9] Enquist-Newman, M., Faust, A. M. E., Bravo, D. D., Santos, R. M., Raisner, Hanel, A., Sarvabhowman, P., Le, C., Regitsky, D. D., Cooper, S. R., Peereboom, L., Clark, A., Martinez, Y., Goldsmith, J., Cho, M. Y., Donohoue, P. D., Luo, L., Lamberson, B., Tamrakar, P., Kim, E. J., Villari, J. L. , Gill, A., Tripathi, S. A, Karamchedu, P., Paredes, C. J., Rajgarhia, V., Kotlar, H. K., Bailey, R. B., Miller, D. J., Ohler, N. L., Swimmer, C. and Yoshikuni, Y. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform, Nature, 2014, 505, 239–243. Web of ScienceGoogle Scholar

  • [10] Horn, S. J., Aasen, I. M. and Stgaard, K. Ethanol production from seaweed extract, J. Ind. Microbiol. Biotechnol. 2000, 25, 249–254. CrossrefGoogle Scholar

  • [11] Horn, S. J., Aasen, I. M and Stgaard, K. Production of ethanol from mannitol by Zymobacter palmae, J. Ind. Microbiol. Biotechnol. 2000 24, 51–57. CrossrefGoogle Scholar

  • [12] Ross, A. B., Jones, J. M., Kubacki, M. L and Bridgeman, T. Classification of macroalgae as fuel and its thermochemical behaviour, Bioresour. Technol. 2008, 99, 6494–6504. CrossrefWeb of ScienceGoogle Scholar

  • [13] Aresta, M., Dibenedetto, A and Barberio, G. Utilization of macro-algae for enhanced CO2 fixation and biofuels production: Development of a computing software for an LCA study, Fuel Process. Technol., 2005, 86, 1679–1693. CrossrefGoogle Scholar

  • [14] Agarwal, A. K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Prog. Energy Combust. Sci., 2007, 33, 233–271 Web of ScienceCrossrefGoogle Scholar

  • [15] Lee, J. Y., Li, P., Lee, J., Ryu, H. J and Oh, K. K. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation, Bioresour. Technol., 2013, 127, 119–125. CrossrefGoogle Scholar

  • [16] Kumar, S., Gupta, R., Kumar, G., Sahoo, D and Kuhad, R. C. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach, Bioresour. Technol., 2013, 135, 150–156. CrossrefGoogle Scholar

  • [17] Borines, M. G., de Leon, R. L. and Cuello, J. L. Bioethanol production from the macroalgae Sargassum spp., Bioresour. Technol., 2013, 138, 22–29. CrossrefGoogle Scholar

  • [18] Kelly, M. S and Dworjanyn, S. The potential of marine biomass for anaerobic biogas production: a feasibility study with recommendations for further reasearch. The Crown Estate, 2008, 103p. Google Scholar

  • [19] Adams, J. M., Gallagher, J. A and Donnison, I. S. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments, J. Appl. Phycol., 2009, 21, 569–574. CrossrefWeb of ScienceGoogle Scholar

  • [20] Daroch, M. Geng, S and Wang, G. Recent advances in liquid biofuel production from algal feedstocks, Appl. Energy, 2013, 102, 1371–1381. CrossrefGoogle Scholar

  • [21] Yanagisawa, M., Nakamura, K., Ariga, O and Nakasaki, K. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides, Process Biochem., 2011, 46, 2111–2116 CrossrefWeb of ScienceGoogle Scholar

  • [22] Yanagisawa, M., Kawai, S and Murata, K. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds., Bioengineered, 2013, 4, 224–35. Google Scholar

  • [23] Walker, G. M. 125th Anniversary Review: Fuel Alcohol: Current Production and Future Challenges, Journal of The Institute of Brewing & Distilling, 2011, 117, 3–22. Google Scholar

  • [24] Papini, M., Nookaew, I., Uhlén, M and Nielsen, J. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae, Microb. Cell Fact., 2012, 11, 136-152. Web of ScienceCrossrefGoogle Scholar

  • [25] Lane, M. M and Morrissey, J. P. Kluyveromyces marxianus: A yeast emerging from its sister’s shadow, Fungal Biol. Rev., 2010, 24, 17–26. CrossrefGoogle Scholar

  • [26] Pereira, S. R., Sànchez i Nogué, V., Frazão, C. J. R., Serafim, L. S., Gorwa-Grauslund, M. F and Xavier, A. M. R. B. Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering, Biotechnol. Biofuels, 2015, 8, 1–8. Web of ScienceGoogle Scholar

  • [27] Lertwattanasakul, N., Kosaka, T., Hosoyama, A., Suzuki, Y., Rodrussamee, N., Matsutani, M. Murata, M. Fujimoto, N., Suprayogi, Tsuchikane, K., Limtong, S., Fujita, N and Yamada, M. Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses., Biotechnol. Biofuels, 2015, 8, 47-61. Web of ScienceCrossrefGoogle Scholar

  • [28] Löser, C., Urit, T., Gruner, E and Bley, T. Efficient growth of Kluyveromyces marxianus biomass used as a biocatalyst in the sustainable production of ethyl acetate, Energy. Sustain. Soc., 2015, 5, 2-15. CrossrefWeb of ScienceGoogle Scholar

  • [29] Cheng, C. C., Yu, M. C., Cheng, T. C., Sheu, D. C., Duan, K. J and Tai, W. L. Production of high-content galacto-oligosaccharide by enzyme catalysis and fermentation with Kluyveromyces marxianus, Biotechnol. Lett., 2006, 28, 793–797. CrossrefGoogle Scholar

  • [30] Rouhollah, H., Iraj, N., Giti, E and Sorah, A. Mixed sugar fermentation by Pichia stipitis , Saccharomyces cerevisiae , and an isolated xylose-fermenting Kluyveromyces marxianus and their cocultures, African J. Biotechnol., 2007, 6, 1110–1114. Google Scholar

  • [31] van der Wal, H., Sperber, B. L. H. M., Houweling-Tan, B., Bakker, R. R. C., Brandenburg, W and López-Contreras, A. M. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca, Bioresour. Technol., 2013, 128, 431–437. Google Scholar

  • [32] Rioux, L. E., Turgeon, S. L and Beaulieu, M. Effect of season on the composition of bioactive polysaccharides from the brown seaweed Saccharina longicruris, Phytochemistry, 2009, 70, 1069–1075. Web of ScienceCrossrefGoogle Scholar

  • [33] Horn, S. J. Bioenergy from brown seaweeds, PhD Thesis, Norwegian University of Science and Technology, Trondheim, Norway. 2000 Google Scholar

  • [34] Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D and Nrel, J. W. Determination of total solids in biomass and total dissolved solids in liquid process samples, Natl. Renew. Energy Lab., 2008, 3–5. Google Scholar

  • [35] White, J. S., Yohannan, B. K., and Walker, G. M. Bioconversion of brewer’s spent grains to bioethanol, FEMS Yeast Res., 2008, 8, 1175–1184 Web of ScienceCrossrefGoogle Scholar

  • [36] Borines, M. G., De Leon, R. L., and McHenry, M. P. Bioethanol production from farming non-food macroalgae in Pacific island nations: Chemical constituents, bioethanol yields, and prospective species in the Philippines, Renew. Sustain. Energy Rev., 2011, 15, 4432–4435 CrossrefWeb of ScienceGoogle Scholar

  • [37] Moen, E., Horn, S and Østgaard, K. Biological degradation of Ascophyllum nodosum, J. Appl. Phycol., 1997, 9, 347–357. CrossrefGoogle Scholar

  • [38] Choi, D., Sim, H. S., Piao, Y. L., Ying, W and Cho, H. Sugar production from raw seaweed using the enzyme method, J. Ind. Eng. Chem., 2009, 15, 12–15. Web of ScienceGoogle Scholar

  • [39] Yeon, J. H., Lee, S. E., Choi, W. Y., Kang, D. H., Lee, H. Y and Jung, K. H. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum, J. Microbiol. Biotechnol., 2011, 21, 323–331. Web of ScienceGoogle Scholar

  • [40] Kim, N. J., Li, H., Jung, K., Chang, H. N and Lee, P. C. Ethanol production from marine algal hydrolysates using Escherichia coli KO11, Bioresour. Technol., 2011, 102, 7466–7469. Google Scholar

  • [41] Trivedi, N. Reddy, C. R. K. Radulovich, R and Jha, B. Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production, Algal Res., 2015, 9, 48–54. CrossrefWeb of ScienceGoogle Scholar

  • [42] Trivedi, N., Gupta, V., Reddy, C. R. K and Jha, B. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile, Bioresour. Technol., 2013, 150, 106–112. CrossrefGoogle Scholar

About the article

Received: 2015-08-14

Accepted: 2016-01-22

Published Online: 2016-06-29

Citation Information: Bioethanol, Volume 2, Issue 1, Pages 134–145, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2016-0010.

Export Citation

© 2016 Oluwatosin Obata et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Izabela Michalak
Wiley Interdisciplinary Reviews: Energy and Environment, 2018, Page e288

Comments (0)

Please log in or register to comment.
Log in