Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Bioethanol

Ed. by Ruiz, Héctor

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2299-6788
See all formats and pricing
More options …

Utilization of unripe banana peel waste as feedstock for ethanol production

Ashish G. Waghmare
  • Corresponding author
  • Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai-400 019, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shalini S. Arya
  • Corresponding author
  • Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai-400 019, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-29 | DOI: https://doi.org/10.1515/bioeth-2016-0011

Abstract

Banana is second largest produced fruit of total world’s fruits. Cooking banana or plantains processing industry is generating enormous amount of waste in the form of unripe banana peel at one place, thus important to study waste management and utilization. Therefore, unripe banana peel was investigated for ethanol production. This study involved chemical characterization, optimization of acid hydrolysis, selection of yeast strain and optimization of fermentative production of ethanol from dried unripe banana peel powder (DUBPP). Ethanol concentration was determined using gas chromatography flame ionization detector (GC-FID). Characterization of DUBPP revealed notably amount of starch (41% w/w), cellulose (9.3% w/w) and protein (8.4% w/w). 49.2% w/w of reducing sugar was produced by acid hydrolysis of DUBPP at optimized conditions. Three yeast strains of Saccharomyces cerevisiae were screened for ethanol conversion efficiency, osmotolerance, ethanol tolerance, thermotolerance, fermentation ability at high temperature and sedimentation rate. Further, fermentation conditions were optimized for maximum ethanol production from acid hydrolysate of DUBPP. At optimized fermentation conditions, 35.5 g/l ethanol was produced using selected strain of Saccharomyces cerevisiae NCIM 3095. Hence, unripe banana peel waste can be good feedstock for ethanol production.

This article offers supplementary material which is provided at the end of the article.

Keywords: Banana; Ethanol production; Banana peel; Waste management; Acid hydrolysis; Fermentation

References

  • [1] Food Agriculture Organization of the United Nations, FAOSTAT. Rome, Italy: FAO, 2014. Google Scholar

  • [2] Sartori T., Menegalli F.C., Development and characterization of unripe banana starch films incorporated with solid lipid microparticles containing ascorbic acid, Food Hydrocolloid., 2015, 55, 210-219. Web of ScienceCrossrefGoogle Scholar

  • [3] Giraldo Toro A., Gibert O., Ricci J., Dufour D., Mestres C., Bohuon P., Digestibility prediction of cooked plantain flour as a function of water content and temperature. Carbohydr. Polym., 2015, 118, 257-265. Web of ScienceCrossrefGoogle Scholar

  • [4] Branca C., Blasi C.D., A lumped kinetic model for banana peel combustion, Thermochim. Acta, 2015, 614, 68-75. Web of ScienceGoogle Scholar

  • [5] Nasidi M., Deeni Y., Agu R., Walker G., Fermentation of stalk juices from different Nigerian sorghum cultivars to ethanol, Bioeth., 2013, 1, 20-27. Google Scholar

  • [6] Sanchez O.J., Cardona C.A., Review: Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresour. Technol., 2008, 99, 5270-5295. Web of ScienceCrossrefGoogle Scholar

  • [7] Brethauer S., Wyman C.E., Review: Continuous hydrolysis and fermentation for cellulosic ethanol production, Bioresour. Technol., 2010, 101, 4862-4874. CrossrefGoogle Scholar

  • [8] Muhammad Nasidi M., Agu R., Deeni Y., Giginyu I.B., Walker G., Bioconversion of degraded husked sorghum grains to ethanol, Bioeth., 2015, 2, 1-11. Google Scholar

  • [9] Yamashita Y., Sasaki C., Nakamura Y., Effective enzyme saccharification and ethanol production from Japanese cedar using various pre-treatment methods, J. Biosci. Bioeng., 2010, 110, 79-86. Web of ScienceCrossrefGoogle Scholar

  • [10] Campo I.D., Alegria I., Zazpe M., Echeverria M., Echeverria I., Diluted acid hydrolysis pre-treatment of agri-food wastes for bio-ethanol production, Ind. Crop. Prod., 2006, 42, 214-221. CrossrefGoogle Scholar

  • [11] Pramanik K., Rao D.E., Kinetic study on ethanol fermentation of grape waste using Saccharomyces cerevisiae yeast isolated from toddy, IE (I) Journal, 2005, 85, 53-58. Google Scholar

  • [12] Essien J.P., Akpan E.J., Essien E.P., Studies on mould growth and biomass production using waste banana peel, Bioresour Technol, 2005, 96, 1451-1456. CrossrefGoogle Scholar

  • [13] Khan N., Roes-Hill M., Welz P.J., Grandin K.A., Kudanga T., Van Dyk J.S., et al., Fruit waste streams in South Africa and their potential role in developing a bio-economy, S. Afr. J. Sci., 2015, 111, 5-16. Google Scholar

  • [14] Choia I.S., Leea Y.G., Khanalb S.K., Parkc B.J., Bae H.J., A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production, Appl. Energ., 2015, 140, 65-74. Web of ScienceGoogle Scholar

  • [15] Wyman C.E., Twenty years of trials, tribulations, and research progress in bioethanol technology, Appl. Bochem. Biotechnol., 2001, 91, 5-21. CrossrefGoogle Scholar

  • [16] Hammond J.B., Egg R., Diggins D., Coble C.G., Alcohol from bananas, Bioresour. Technol., 1996, 56, 125-130. CrossrefGoogle Scholar

  • [17] Guneseelan N.V., Biochemical methane potential of fruits and vegetables solid waste feedstocks, Biomass Bioenerg., 2004, 26, 389-399. CrossrefGoogle Scholar

  • [18] Oberoi HS., Vadlani P.V, Saida L., Bansal S., Hughes J.D., Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process, Waste Manag., 2011, 31(7), 1576-84. Google Scholar

  • [19] AOAC (Association of Official Analytical Chemists), Official methods of analysis, 16th ed. Washington, 2001. Google Scholar

  • [20] Miller G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 1956, 31, 426-428. CrossrefGoogle Scholar

  • [21] Branyikova I., Marsalkova B., Doucha J, Branyik T., Bisova K., Zachleder V., Vitova M., Microalgae-novel highly efficient starch producers, Biotechnol. Bioeng., 2011, 108, 766-776. CrossrefWeb of ScienceGoogle Scholar

  • [22] Takeshita T., Ota S., Yamazaki T., Hirata A., Zachleder V., Kawano S., Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions, Bioresour Technol., 2014, 158, 127-34. CrossrefWeb of ScienceGoogle Scholar

  • [23] Sadasivam S., Manikam A., Biochemical Methods 2nd ed. Chemistry and allied sciences books of new age international limited, New Delhi, India, 2005. Google Scholar

  • [24] Van Soest P.J., Robertson J.B., Lewis B.A., Method for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition, J. Dairy Sci., 1991, 74, 3583-3597. CrossrefGoogle Scholar

  • [25] Brooks A.A., Ethanol production potential of local yeast strains isolated from ripe banana peels, Afr. J. Biotechnol., 2008, 7, 3749-3752. Google Scholar

  • [26] Subashini D., Ejilane J., Radha A., Jayasri M.A., Suthindhiran K., Ethanol production from sago waste using Saccharomyces cerevisiae Vits-M1, Curr. Res. J. Biol. Sci., 2011, 3, 42-51. Google Scholar

  • [27] Tan L., Sun Z.Y., Okamoto S., Takaki M., Tang Y.Q., Morimura S., Kida, K., Production of ethanol from raw juice and thick juice of sugar beet by continuous ethanol fermentation with flocculating yeast strain KF-7. Biomass Bioenerg, 2015, 81, 265-272. Web of ScienceCrossrefGoogle Scholar

  • [28] Hari Krishna S., Chowdary G.V., Optimization of simultaneous saccharification and fermentation for the production of ethanol from biomass, J. Agr. Food Chem., 2000, 48, 1971-1976. CrossrefGoogle Scholar

  • [29] Fischer C.R., Klein-Marcuschamer D., Stephanopoulos G., Selection and optimization of microbial hosts for bio-fuels production, Metab. Eng., 2008, 10, 295-304. Web of ScienceCrossrefGoogle Scholar

  • [30] Wu W.H., Hung W.C., Lo KY., Chen Y.H., Wan H.P., Cheng K.C., Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21, Bioresour. Technol., 2015, 201, 27-32. Google Scholar

  • [31] Abd-Rahim F., Wasoh H., Zakaria M.R., Ariff A., Kapri R., Ramli N., Siew-Ling L., Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis, Food Hydrocolloid., 2014, 42(2), 309-315. Web of ScienceGoogle Scholar

  • [32] Meinita M.D.N., Hong Y.K., Jeong G.T., Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst. Eng., 2012, 35, 123-128. Web of ScienceGoogle Scholar

  • [33] Larsson S., Palmqvist E., Hahn-Hagerdal B., Tengeborg C., Stenberg K., Zacchi G., et al. The generation of fermentation inhibitors during dilute acid hydrolysis of soft-wood. Enzyme Microb. Technol., 1999, 24, 151-159. CrossrefGoogle Scholar

  • [34] Hahn-Hagerdal B., Galbe M., Gorwa-Grauslund M.F., Liden G., Zacchi G., Bio-ethanol the fuel of tomorrow from the residues of today, Trends Biotechnol., 2006, 24, 12. Google Scholar

  • [35] Patle S., Lal B., Investigation of the potential of agro-industrial material as low cost substrate for ethanol production by using Candida tropicalis and Zymomonas mobilis. Biomass Bioenerg., 2008, 32(7), 596-602. Web of ScienceCrossrefGoogle Scholar

  • [36] Sharma S.K., Enzymatic saccharification of pre-treated sunflower stalks, Biomass Bioenerg., 2002, 23, 237-243. CrossrefGoogle Scholar

  • [37] Ortiz-Zamora O., Cortes-Garcia R., Ramirez-Lepe M., Gomez- Rodriguez J., Aguilar-Uscanga M.G., isolation and selection of ethanol-resistant and osmotolerant yeasts from regional agricultural sources in Mexico, J. Food Process Eng., 2009, 32(5), 775-786. CrossrefWeb of ScienceGoogle Scholar

  • [38] Gera R., Dhamija S.S., Gera T., Singh D., Intergeneric ethanol producing hybrids of thermotolerant Kluyveromyces and non-thermotolerant Saccharomyces cerevisiae, Biotechnol Lett., 1997, 19(2), 189-194. CrossrefGoogle Scholar

  • [39] Ge X.M., Zhang L., Bai F.W., Impacts of temperature, pH, divalent cations, sugars and ethanol on the flocculating of SPSC01, Enzyme Microb. Tech., 2006, 39, 783-787. CrossrefGoogle Scholar

  • [40] Kiran Sree N., Sridhar M., Suresh K., Banat I.M., Venkateswar Rao L., Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresour Technol., 2000, 72(1), 43-46. CrossrefGoogle Scholar

  • [41] Konar E.M., Harde S.M., Kagliwal L.D., Singhal R.S., Value-added bioethanol from spent ginger obtained after oleoresin extraction, Ind. Crops Prod., 2013, 42, 299-307. Web of ScienceCrossrefGoogle Scholar

  • [42] Fakruddin M.M., Abdul-Quayum M., Ahmed M., Choudhury N., Analysis of key factors affecting ethanol production by Saccharomyces cerevisiae IFST-072011, Biotechnol., 11, 248-252. Google Scholar

  • [43] Joshi J., Enhanced production of ethanol from red potatoes grown in hilly regions of Nepal using various nitrogen sources, Int. J. Appl. Sci. Biotechnol., 2014, 2(1), 41-44. CrossrefGoogle Scholar

About the article

Received: 2015-07-27

Accepted: 2016-01-22

Published Online: 2016-06-29


Citation Information: Bioethanol, Volume 2, Issue 1, Pages 146–156, ISSN (Online) 2299-6788, DOI: https://doi.org/10.1515/bioeth-2016-0011.

Export Citation

© 2016 Ashish G. Waghmare, Shalini S. Arya. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in