Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year


IMPACT FACTOR 2016 (Open Life Sciences): 0.448

CiteScore 2016: 1.02

SCImago Journal Rank (SJR) 2016: 0.329
Source Normalized Impact per Paper (SNIP) 2016: 0.621

Open Access
Online
ISSN
2391-5412
See all formats and pricing
In This Section
Volume 1, Issue 1 (Mar 2006)

Issues

Search for proteins with similarity to the CFTR R domain using an optimized RDBMS solution, mBioSQL

Tamás Hegedűs
  • Department of Biochemistry & Biophysics and Cystic Fibrosis T&R Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
  • Email:
/ John Riordan
  • Department of Biochemistry & Biophysics and Cystic Fibrosis T&R Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
  • Email:
Published Online: 2006-03-01 | DOI: https://doi.org/10.2478/s11535-006-0003-9

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) comprises ATP binding and transmembrane domains, and a unique regulatory (R) domain not found in other ATP binding cassette proteins. Phosphorylation of the R domain at different sites by PKA and PKC is obligatory for the chloride channel function of CFTR. Sequence similarity searches on the R domain were uninformative. Furthermore, R domains from different species show low sequence similarity. Since these R domains resemble each other only in the location of the phosphorylation sites, we generated different R domain patterns masking amino acids between these sites. Because of the high number of the generated patterns we expected a large number of matches from the UniProt database. Therefore, a relational database management system (RDBMS) was set up to handle the results. During the software development our system grew into a general package which we term Modular BioSQL (mBioSQL). It has higher performance than other solutions and presents a generalized method for the storage of biological result-sets in RDBMS allowing convenient further analysis. Application of this approach revealed that the R domain phosphorylation pattern is most similar to those in nuclear proteins, including transcription and splicing factors.

Keywords: Cystic fibrosis; CFTR; regulatory domain; phosphorylation; relational database management system

  • [1] J.R. Riordan et al.: “Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA”, Science, Vol. 245, (1989), pp. 1066–1073. Google Scholar

  • [2] Y.H. Ko and P.L. Pedersen: “Cystic fibrosis: a brief look at some highlights of a decade of research focused on elucidating and correcting the molecular basis of the disease”, J. Bioenerg. Biomembr., Vol. 33, (2001), pp. 513–521. http://dx.doi.org/10.1023/A:1012831322753CrossrefGoogle Scholar

  • [3] S.H. Cheng et al.: “Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel”, Cell, Vol. 66, (1991), pp. 1027–1036. http://dx.doi.org/10.1016/0092-8674(91)90446-6CrossrefGoogle Scholar

  • [4] F.S. Seibert et al.: “Influence of phosphorylation by protein kinase A on CFTR at the cell surface and endoplasmic reticulum”, Biochim. Biophys. Acta, Vol. 1461, (1999), pp. 275–283. http://dx.doi.org/10.1016/S0005-2736(99)00163-7CrossrefGoogle Scholar

  • [5] L. Csanady et al.: “Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA”, J. Gen. Physiol., Vol. 125, (2005), pp. 171–186. http://dx.doi.org/10.1085/jgp.200409076Google Scholar

  • [6] D.C. Gadsby and A.C. Nairn: “Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis”, Physiol. Rev., Vol. 79, (1999), pp. S77–S107. Google Scholar

  • [7] C. Li et al.: “ATPase activity of the cystic fibrosis transmembrane conductance regulator”, J. Biol. Chem., Vol. 271, (1996), pp. 28463–28468. http://dx.doi.org/10.1074/jbc.271.45.28463CrossrefGoogle Scholar

  • [8] J.R. Riordan: “Assembly of functional CFTR chloride channels”, Annu. Rev. Physiol., Vol. 67, (2005), pp. 701–718. http://dx.doi.org/10.1146/annurev.physiol.67.032003.154107CrossrefGoogle Scholar

  • [9] D.P. Rich et al.: “Regulation of the cystic fibrosis transmembrane conductance regulator Cl-channel by negative charge in the R domain”, J. Biol. Chem., Vol. 268, (1993), pp. 20259–20267. Google Scholar

  • [10] V. Chappe et al.: “Phosphorylation of CFTR by PKA promotes binding of the regulatory domain”, Embo. J., Vol. 24, (2005), pp. 2730–2740. http://dx.doi.org/10.1038/sj.emboj.7600747CrossrefGoogle Scholar

  • [11] A.M. Dulhanty and J.R. Riordan: “A two-domain model for the R domain of the cystic fibrosis transmembrane conductance regulator based on sequence similarities”, FEBS Lett., Vol. 343, (1994), pp. 109–114. http://dx.doi.org/10.1016/0014-5793(94)80300-5CrossrefGoogle Scholar

  • [12] A.M. Dulhanty and J.R. Riordan: “Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator”, Biochemistry Vol. 33, (1994), pp. 4072–4079. http://dx.doi.org/10.1021/bi00179a036CrossrefGoogle Scholar

  • [13] L.S. Ostedgaard et al.: “A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution”, Proc. Natl. Acad. Sci. USA Vol. 97, (2000), pp. 5657–5662. http://dx.doi.org/10.1073/pnas.100588797CrossrefGoogle Scholar

  • [14] J.E. Stajich et al.: “The Bioperl toolkit: Perl modules for the life sciences”, Genome. Res., Vol. 12, (2002), pp. 1611–1618. http://dx.doi.org/10.1101/gr.361602CrossrefGoogle Scholar

  • [15] A. Bairoch et al.: “The Universal Protein Resource (UniProt)”, Nucleic Acids Res., Vol. 33, (2005), pp. D154–D159. http://dx.doi.org/10.1093/nar/gki070CrossrefGoogle Scholar

  • [16] C. del Val et al.: “High-throughput protein analysis integrating bioinformatics and experimental assays”, Nucleic Acids Res. Vol. 32, (2004), pp. 742–748. http://dx.doi.org/10.1093/nar/gkh257CrossrefGoogle Scholar

  • [17] E.L. Grogan et al.: “Volatility: a new vital sign identified using a novel bedside monitoring strategy”, J. Trauma., Vol. 58, (2005), pp. 7–12; discussion 12-14. http://dx.doi.org/10.1097/01.TA.0000151179.74839.98CrossrefGoogle Scholar

  • [18] L.S. Ostedgaard, O. Baldursson and M.J. Welsh: “Regulation of the cystic fibrosis transmembrane conductance regulator Cl-channel by its R domain”, J. Biol. Chem., Vol. 276, (2001), pp. 7689–7692. http://dx.doi.org/10.1074/jbc.R100001200CrossrefGoogle Scholar

  • [19] V. Chappe et al.: “Stimulatory and inhibitory protein kinase C consensus sequences regulate the cystic fibrosis transmembrane conductance regulator”, Proc. Natl. Acad. Sci. USA, Vol. 101, (2004), pp. 390–395. http://dx.doi.org/10.1073/pnas.0303411101CrossrefGoogle Scholar

  • [20] L. Csanady et al.: “Functional roles of nonconserved structural segments in CFTR’s NH2-terminal nucleotide binding domain”, J. Gen. Physiol., Vol. 125, (2005), pp. 43–55. http://dx.doi.org/10.1085/jgp.200409174CrossrefGoogle Scholar

  • [21] L. Wei et al.: “The C-terminal part of the R-domain, but not the PDZ binding motif, of CFTR is involved in interaction with Ca(2+)-activated Cl-channels”, Pflugers Arch. Vol. 442, (2001), pp. 280–285. http://dx.doi.org/10.1007/s004240100531CrossrefGoogle Scholar

  • [22] S.B. Ko et al.: “Gating of CFTR by the STAS domain of SLC26 transporters”, Nat. Cell. Biol. Vol. 6, (2004), pp. 343–350. http://dx.doi.org/10.1038/ncb1115CrossrefGoogle Scholar

  • [23] D.B. Mount and M.F. Romero: “The SLC26 gene family of multifunctional anion exchangers”, Pflugers Arch., Vol. 447, (2004), pp. 710–721. http://dx.doi.org/10.1007/s00424-003-1090-3CrossrefGoogle Scholar

  • [24] M.J. Hug, T. Tamada and R.J. Bridges: “CFTR and bicarbonate secretion by [correction of to] epithelial cells”, News Physiol. Sci. Vol. 18, (2003), pp. 38–42. Google Scholar

  • [25] A. Hemminki et al.: “Intestinal cancer in patients with a germline mutation in the down-regulated in adenoma (DRA) gene”, Oncogene, Vol. 16, (1998), pp. 681–684. http://dx.doi.org/10.1038/sj.onc.1201538CrossrefGoogle Scholar

  • [26] J.M. Chapman et al.: “The colon anion transporter, down-regulated in adenoma, induces growth suppression that is abrogated by E1A”, Cancer Res. Vol. 62, (2002), pp. 5083–5088. Google Scholar

  • [27] E.M. Schwiebert et al.: “CFTR is a conductance regulator as well as a chloride channel”, Physiol. Rev. Vol. 79, (1999), pp. S145–S166. Google Scholar

  • [28] K. Kunzelmann: “CFTR: interacting with everything?”, News Physiol. Sci. Vol. 16, (2001), pp. 167–170. Google Scholar

  • [29] A.P. Naren et al.: “A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA”, Proc. Natl. Acad. Sci. USA, Vol. 100, (2003), pp. 342–346. http://dx.doi.org/10.1073/pnas.0135434100CrossrefGoogle Scholar

  • [30] A.R. Cantrell et al.: “Molecular mechanism of convergent regulation of brain Na(+) channels by protein kinase C and protein kinase A anchored to AKAP-15”, Mol. Cell. Neurosci. Vol. 21, (2002), pp. 63–80. http://dx.doi.org/10.1006/mcne.2002.1162CrossrefGoogle Scholar

  • [31] W.B. Thornhill and S.R. Levinson: “Biosynthesis of ion channels in cell-free and metabolically labeled cell systems”, Methods Enzymol Vol. 207, (1992), pp. 659–670. http://dx.doi.org/10.1016/0076-6879(92)07047-RCrossrefGoogle Scholar

  • [32] S. Pind„ J.R. Riordan and D.B. Williams: “Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator”, J. Biol. Chem., Vol. 269, (1994), pp. 12784–12788. Google Scholar

  • [33] S.P. Shah et al.: “Atlas — a data warehouse for integrative bioinformatics”, BMC Bioinformatics, Vol. 6, (2005), pp. 34. http://dx.doi.org/10.1186/1471-2105-6-34CrossrefGoogle Scholar

  • [34] G. Xie et al.: “Storing biological sequence databases in relational form”, Bioinformatics, Vol. 16, (2000), pp. 288–289. http://dx.doi.org/10.1093/bioinformatics/16.3.288CrossrefGoogle Scholar

  • [35] J. Kohler, S. Philippi and M. Lange: “SEMEDA: ontology based semantic integration of biological databases”, Bioinformatics, Vol. 19, (2003), pp. 2420–2427. http://dx.doi.org/10.1093/bioinformatics/btg340CrossrefGoogle Scholar

  • [36] S. Philippi: “Light-weight integration of molecular biological databases”, Bioinformatics, Vol. 20, (2004), pp. 51–57. http://dx.doi.org/10.1093/bioinformatics/btg372CrossrefGoogle Scholar

  • [37] S. Stephens: “Data Integration and Knowledge Aggregation in Life Sciences Discovery”, Scientific Comput. Instrum. Vol. 21, (2005). Google Scholar

  • [38] G. Finak et al.: “BIAS: Bioinformatics Integrated Application Software”, Bioinformatics, Vol. 21, (2005), pp. 1745–1746. http://dx.doi.org/10.1093/bioinformatics/bti170CrossrefGoogle Scholar

  • [39] S.A. Kirov et al.: “GeneKeyDB: a lightweight, gene-centric, relational database to support data mining environments”, BMC Bioinformatics, Vol. 6, (2005), pp. 72. http://dx.doi.org/10.1186/1471-2105-6-72CrossrefGoogle Scholar

  • [40] S.P. Shah et al.: “Pegasys: software for executing and integrating analyses of biological sequences”, BMC Bioinformatics Vol. 5, (2004), pp. 40. http://dx.doi.org/10.1186/1471-2105-5-40CrossrefGoogle Scholar

About the article

Published Online: 2006-03-01

Published in Print: 2006-03-01


Citation Information: Open Life Sciences, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-006-0003-9.

Export Citation

© 2006 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tamás Hegedűs, Adrian W.R. Serohijos, Nikolay V. Dokholyan, Lihua He, and John R. Riordan
Journal of Molecular Biology, 2008, Volume 378, Number 5, Page 1052
[2]
John R. Riordan
Annual Review of Biochemistry, 2008, Volume 77, Number 1, Page 701

Comments (0)

Please log in or register to comment.
Log in