Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 1, Issue 2

Issues

Volume 10 (2015)

Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements

Simone Graeff / Johanna Link / Wilhelm Claupein
Published Online: 2006-06-01 | DOI: https://doi.org/10.2478/s11535-006-0020-8

Abstract

The ability to identify diseases in an early infection stage and to accurately quantify the severity of infection is crucial in plant disease assessment and management. A greenhouse study was conducted to assess changes in leaf spectral reflectance of wheat plants during infection by powdery mildew and take-all disease to evaluate leaf reflectance measurements as a tool to identify and quantify disease severity and to discriminate between different diseases. Wheat plants were inoculated under controlled conditions in different intensities either with powdery mildew or take-all. Leaf reflectance was measured with a digital imager (Leica S1 Pro, Leica, Germany) under controlled light conditions in various wavelength ranges covering the visible and the near-infrared spectra (380–1300 nm). Leaf scans were evaluated by means of L*a*b*-color system. Visual estimates of disease severity were made for each of the epidemics daily from the onset of visible symptoms to maximum disease severity. Reflectance within the ranges of 490780 nm (r2 = 0.69), 510780nm (r2 = 0.74), 5161300nm (r2 = 0.62) and 5401300 nm (r2 = 0.60) exhibited the strongest relationship with infection levels of both powdery mildew and take-all disease. Among the evaluated spectra the range of 490780nm showed most sensitive response to damage caused by powdery mildew and take-all infestation. The results of this study indicated that disease detection and discrimination by means of reflectance measurements may be realized by the use of specific wavelength ranges. Further studies have to be carried out, to discriminate powdery mildew and take-all infection from other plant stress factors in order to develop suitable decision support systems for site-specific fungicide application.

Keywords: Plant disease; leaf reflectance; wavelength ranges; powdery mildew; take-all disease

  • [1] J.N. Perry: “Sampling and applied statistics for pests and diseases. Sampling to make decisions”, Aspects Appl. Biol., Vol. 37, (1994), pp. 1–14. Google Scholar

  • [2] G. Hughes: “Incorporating spatial pattern of harmful organisms into crop loss models”, Crop Protect., Vol. 15, (1996), pp. 407–421. http://dx.doi.org/10.1016/0261-2194(96)00003-8CrossrefGoogle Scholar

  • [3] H.A. McCartney and B.D.L. Fitt: “Dispersal of foliar fungal plant pathogens: mechanisms, gradients and spatial patterns”, in D. Gareth Jones (Ed.): Plant disease epidemiology, Kluwer Publishers, London, 1998, pp. 138–160. Google Scholar

  • [4] Y. Sasaki, T. Okamoto, K. Imou and T. Torii: “Automatic diagnosis of plant disease — Spectral reflectance of healthy and diseased leaves”, In: Proc. AgEng98 International Conference on Agricultural Engineering, Oslo (Norway), 1998, CD. Google Scholar

  • [5] B. Lorenzen and A. Jensen: “Changes in spectral properties induced in barley by cereal powdery mildew”, Rem. Sens. Environ., Vol. 27, (1989), pp. 201–209. http://dx.doi.org/10.1016/0034-4257(89)90018-7CrossrefGoogle Scholar

  • [6] B.J.M. Secher: “Site specific control of diseases in winter wheat”, Aspects Appl. Biol., Vol. 48, (1997), pp. 58–64. Google Scholar

  • [7] F.W. Nutter (Jr.), M.L. Gleason, J.H. Jenco and N.C. Christians: “Assessing the accuracy, inter-rater repeatability and inter-rater reliability of disease assessment systems”, Phytopathology, Vol. 83, (1993), pp. 806–812. Google Scholar

  • [8] L.D. Lathrop and S. Pennypacker: “Spectral classification of tomato disease severity levels”, Photogramm. Eng. Rem. Sens., Vol. 46, (1980), pp. 1433–1438. Google Scholar

  • [9] F.W. Nutter (Jr.): “Detection and measurement of plant disease gradients in peanut with a multispectral radiometer”, Phytopathology, Vol. 79, (1989), pp. 958–963. Google Scholar

  • [10] H. E. Nilsson: “Hand-held radiometry and IR thermography of plant diseases in field plot experiments”, Int. J. Rem. Sens., Vol. 12, (1991), pp. 545–557. Google Scholar

  • [11] L. Chaerle, W.M. Van Caeneghem, H. Lambers, M. Van Montagu and D. Van Der Straeten: “Presymptomatic visualization of plant-virus interactions by thermography”, Nat. Biotechnol., Vol. 17, (1999), pp. 813–816. http://dx.doi.org/10.1038/11765CrossrefGoogle Scholar

  • [12] L. Chaerle and D. Van der Straeten: “Seeing is believing: imaging techniques to monitor plant health”, Biochim. Biophys. Acta, Vol. 1519, (2001), pp. 153–166. Google Scholar

  • [13] J.R. Riley: “Remote sensing in entomology”, Annu. Rev. Entomol., Vol. 34, (1989), pp. 247–271. http://dx.doi.org/10.1146/annurev.en.34.010189.001335CrossrefGoogle Scholar

  • [14] J.L. Hatfield and P.J. Pinter: “Remote sensing for crop protection”, Crop Protect., Vol. 12, (1993), pp. 403–413. http://dx.doi.org/10.1016/0261-2194(93)90001-YCrossrefGoogle Scholar

  • [15] M.S. Moran, Y. Inoue and E.M. Barnes: “Opportunities and limitations for image-based remote sensing in precision crop management”, Rem. Sens. Environ., Vol. 61, (1997), pp. 319–346. http://dx.doi.org/10.1016/S0034-4257(97)00045-XCrossrefGoogle Scholar

  • [16] H.E. Nilsson: “Remote sensing and image analysis in plant pathology”, Can. J. Plant Pathol., Vol. 17, (1995a), pp. 154–166. http://dx.doi.org/10.1080/07060669509500707CrossrefGoogle Scholar

  • [17] D.M. Gates, H.J. Keegan, J.C. Schleter and V.R. Weidner: “Spectral properties of plants”, Appl. Optics, Vol. 4, (1965), pp. 11–20. http://dx.doi.org/10.1364/AO.4.000011CrossrefGoogle Scholar

  • [18] H.E. Nilsson: “Remote sensing and image analysis in plant pathology”, Annu. Rev. Phytopath., Vol. 15, (1995), pp. 489–527. http://dx.doi.org/10.1146/annurev.py.33.090195.002421CrossrefGoogle Scholar

  • [19] H.E. Nilsson: Application of remote sensing methods and image analysis at macroscopic and microscopic levels, Miscellaneous Publication 7, University of Minnesota Agricultural Experiment Station, St. Paul, 1980. Google Scholar

  • [20] J.J. Burdon: Diseases and Plant Population Biology, Cambridge University Press, Cambridge, 1987. Google Scholar

  • [21] N.D. Paul and P.G. Ayres: “Effects of rust and post-infection drought on photosynthesis, growth, and water relations in groundsel”, Plant Pathol., Vol. 33, (1984), pp. 561–569. CrossrefGoogle Scholar

  • [22] N.D. Paul and P.G. Ayres: “Water stress modifies intraspecific interference between rust (Puccinia lagenophorae Cooke) — infected and healthy groundsel (Senecio vulgaris L.)”, New Phytol., Vol. 106, (1987), pp. 555–566. CrossrefGoogle Scholar

  • [23] G.M. Murray and J.F. Brown: “The incidence and relative importance of wheat diseases in Australia”, Australas. Plant Pathol., Vol. 16, (1987), pp. 34–37. http://dx.doi.org/10.1071/APP9870034CrossrefGoogle Scholar

  • [24] J.P. Brennan and G.M. Murray: “Australian wheat diseases: assessing their economic importance”, J. Agr. Sci., Vol. 2, (1988), pp. 26–35. Google Scholar

  • [25] S. Graeff, D. Steffens and S. Schubert: “Use of reflectance measurements for the early detection of N, P, Mg, and Fe deficiencies in Zea mays L.”, J. Plant Nutr. Soil Sci., Vol. 164, (2001), pp. 445–450. http://dx.doi.org/10.1002/1522-2624(200108)164:4<445::AID-JPLN445>3.0.CO;2-1CrossrefGoogle Scholar

  • [26] S. Graeff and W. Claupein: “Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements”, Eur. J. Agron., Vol. 19, (2003), pp. 611–618. http://dx.doi.org/10.1016/S1161-0301(03)00007-8CrossrefGoogle Scholar

  • [27] P.D. Lancashire, H. Bleiholder, T. van den Boom, P. Langelüddeke, R. Strauss, E. Weber and A. Witzenberger: “A uniform decimal code for growth stages of crops and weeds”, Ann. Appl. Biol., Vol. 119, (1991), pp. 561–601. http://dx.doi.org/10.1111/j.1744-7348.1991.tb04895.xCrossrefGoogle Scholar

  • [28] S. Graeff: Früherkennung von Ernährungsstörungen bei Zea mays L. mittels Blatt-Reflexionsmessungen, Thesis (PhD), University of Gießen, 2000. Google Scholar

  • [29] CIE: Colorimetry, 2nd ed., Publication CIE No. 15.2, Commission Internationale de ls’Éclairage, Vienna, 1986. Google Scholar

  • [30] BSA: Richtlinien für die Durchführung von landwirtschaftlichen Wertprüfungen und Sortenversuchen, Verlag Alfred Strothe, Frankfurt a.M., 1988. Google Scholar

  • [31] S.E. Allen: Chemical analysis of ecological materials, 2nd ed., Blackwell Scientific Publications, Oxford, 1989. Google Scholar

  • [32] A. Dumas: “Stickstoffbestimmung nach Dumas”, Die Praxis des organischen Chemikers, Vol. 41, (1962), pp. 45–51. Google Scholar

  • [33] J.C. Deguise and H. McNairn: “Hyperspectral remote sensing for precision agriculture”, In: Proceedings of Fifth International Conference on Precision Agriculture, Bloomington (USA), 2000, CD. Google Scholar

  • [34] T.J. Malthus and A.C. Madeira: “High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by Botrytis fabae”, Rem. Sens. Environ., Vol. 45, (1993), pp. 107–116. http://dx.doi.org/10.1016/0034-4257(93)90086-DCrossrefGoogle Scholar

  • [35] V.P. Polischuk, T.M. Shadchina, T.I. Kompanetz, I.G. Budzanivskaya and A.A. Sozinov: “Changes in reflectance spectrum characteristic of Nicotiana debneyi plant under the influence of viral infection”, Arch. Phytopath. Plant Protect., Vol. 31(1), (1997), pp. 115–119. http://dx.doi.org/10.1080/03235409709383221CrossrefGoogle Scholar

  • [36] J.G. Hansen: “Use of multispectral radiometry in wheat yellow rust experiments”, Bull. EPPO, Vol. 21, (1991), pp. 651–658. http://dx.doi.org/10.1111/j.1365-2338.1991.tb01299.xCrossrefGoogle Scholar

  • [37] H.E. Nilsson and L. Johnsson: “Hand-held radiometry of barley infected by barley stripe disease in a field experiment”, J. Plant Dis. Protect., Vol. 103, (1996), pp. 517–526. Google Scholar

  • [38] F.W. Nutter (Jr.) and R.H. Littrell: “Relationships between defoliation, canopy reflectance and pod yield in the peanut-late leafspot pathosystem”, Crop Protect., Vol. 15, (1996), pp. 135–142. http://dx.doi.org/10.1016/0261-2194(95)00084-4CrossrefGoogle Scholar

  • [39] F.W. Nutter (Jr.), R.H. Littrell and T.B. Brenneman: “Utilization of a multispectral radiometer to evaluate fungicide efficacy to control late leaf spot in peanut”, Phytopath., Vol. 80, (1990), pp. 102–108. Google Scholar

  • [40] G. Guyot: “Optical properties of vegetation canopies”, In: M.D. Steven and J.A. Clark (Eds.): Applications of Remote Sensing in Agriculture, Butterworths, London, 1990, pp. 19–43. Google Scholar

  • [41] L. Grant: “Diffuse and specular characteristics of leaf reflectance”, Rem. Sens. Environ., Vol. 22, (1987), pp. 309–322. http://dx.doi.org/10.1016/0034-4257(87)90064-2CrossrefGoogle Scholar

About the article

Published Online: 2006-06-01

Published in Print: 2006-06-01


Citation Information: Open Life Sciences, Volume 1, Issue 2, Pages 275–288, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-006-0020-8.

Export Citation

© 2006 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Linsheng Huang, Hansu Zhang, Wenjuan Ding, Wenjiang Huang, Tingguang Hu, and Jinling Zhao
Journal of Spectroscopy, 2019, Volume 2019, Page 1
[2]
C. W. Zecha, J. Link, and W. Claupein
Journal of Sensors and Sensor Systems, 2013, Volume 2, Number 1, Page 51
[3]
Yue Shi, Wenjiang Huang, Pablo González-Moreno, Belinda Luke, Yingying Dong, Qiong Zheng, Huiqin Ma, and Linyi Liu
Remote Sensing, 2018, Volume 10, Number 4, Page 525
[4]
Nikrooz Bagheri, Hosna Mohamadi-Monavar, Aslan Azizi, and Abolghasem Ghasemi
European Journal of Remote Sensing, 2018, Volume 51, Number 1, Page 1
[5]
Hala Abdel Wahab, Mohamed Aboelghar, Abdelraouf Massoud Ali, and Mona Yones
Asian Journal of Plant Pathology, 2017, Volume 11, Number 4, Page 167
[6]
D.V.P. Canário, E. Figueiredo, J.C. J.C., and R. Guerra
European Journal of Horticultural Science, 2017, Volume 82, Number 3, Page 141
[7]
Wei Feng, Shuangli Qi, Yarong Heng, Yi Zhou, Yapeng Wu, Wandai Liu, Li He, and Xiao Li
Frontiers in Plant Science, 2017, Volume 8
[9]
Wenjiang Huang, Qingsong Guan, Juhua Luo, Jingcheng Zhang, Jinling Zhao, Dong Liang, Linsheng Huang, and Dongyan Zhang
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, Volume 7, Number 6, Page 2516
[10]
Federico Martinelli, Riccardo Scalenghe, Salvatore Davino, Stefano Panno, Giuseppe Scuderi, Paolo Ruisi, Paolo Villa, Daniela Stroppiana, Mirco Boschetti, Luiz R. Goulart, Cristina E. Davis, and Abhaya M. Dandekar
Agronomy for Sustainable Development, 2015, Volume 35, Number 1, Page 1
[11]
Jinling Zhao, Linsheng Huang, Wenjiang Huang, Dongyan Zhang, Lin Yuan, Jingcheng Zhang, and Dong Liang
European Journal of Plant Pathology, 2014, Volume 139, Number 2, Page 407
[12]
Lin Yuan, Yanbo Huang, Rebecca W. Loraamm, Chenwei Nie, Jihua Wang, and Jingcheng Zhang
Field Crops Research, 2014, Volume 156, Page 199
[13]
Jingcheng Zhang, Lin yuan, Ruiliang Pu, Rebecca W. Loraamm, Guijun Yang, and Jihua Wang
Computers and Electronics in Agriculture, 2014, Volume 100, Page 79
[14]
Lin Yuan, Jing-Cheng Zhang, Ke Wang, Rebecca-W. Loraamm, Wen-Jiang Huang, Ji-Hua Wang, and Jin-Ling Zhao
Precision Agriculture, 2013, Volume 14, Number 5, Page 495
[15]
Xueren Cao, Yong Luo, Yilin Zhou, Xiayu Duan, and Dengfa Cheng
Crop Protection, 2013, Volume 45, Page 124
[16]
Jing-cheng ZHANG, Lin YUAN, Ji-hua WANG, Wen-jiang HUANG, Li-ping CHEN, and Dong-yan ZHANG
Journal of Integrative Agriculture, 2012, Volume 11, Number 9, Page 1474
[17]
Jing-Cheng Zhang, Rui-liang Pu, Ji-hua Wang, Wen-jiang Huang, Lin Yuan, and Ju-hua Luo
Computers and Electronics in Agriculture, 2012, Volume 85, Page 13
[18]
C.D. Jones, J.B. Jones, and W.S. Lee
Computers and Electronics in Agriculture, 2010, Volume 74, Number 2, Page 329
[19]
Rayapati A. Naidu, Eileen M. Perry, Francis J. Pierce, and Tefera Mekuria
Computers and Electronics in Agriculture, 2009, Volume 66, Number 1, Page 38
[20]
T. Rumpf, A.-K. Mahlein, U. Steiner, E.-C. Oerke, H.-W. Dehne, and L. Plümer
Computers and Electronics in Agriculture, 2010, Volume 74, Number 1, Page 91
[21]
Ashish Mishra, Davood Karimi, Reza Ehsani, and L. Gene Albrigo
Biosystems Engineering, 2011, Volume 110, Number 3, Page 302
[22]
Sindhuja Sankaran, Ashish Mishra, Reza Ehsani, and Cristina Davis
Computers and Electronics in Agriculture, 2010, Volume 72, Number 1, Page 1
[23]

Comments (0)

Please log in or register to comment.
Log in