Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 1, Issue 3

Issues

Volume 10 (2015)

PRRs in pathogen recognition

Satoshi Uematsu
  • Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita Osaka, 565-0871, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shizuo Akira
  • Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita Osaka, 565-0871, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-09-01 | DOI: https://doi.org/10.2478/s11535-006-0024-4

Abstract

The innate immune system provides the first line of host defense against invading microorganisms before the development of adaptive immune responses. Innate immune responses are initiated by germline-encoded pattern recognition receptors (PRRs), which recognize specific structures of microorganisms. Toll-like receptors (TLRs) are pattern-recognition receptors that sense a wide range of microorganisms, including bacteria, fungi, protozoa and viruses. TLRs exist either on the cell surface or in the lysosome/endosome compartment and induce innate immune responses. Recently, cytoplasmic PRRs have been identified which detect pathogens that have invaded the cytosol. This review focuses on the pathogen recognition of PRRs in innate immunity.

Keywords: TLR; NLR; RIG-I

  • [1] B. Lemaitre et al.: “The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults”, Cell, Vol. 86, (1996), pp. 973–983. http://dx.doi.org/10.1016/S0092-8674(00)80172-5CrossrefGoogle Scholar

  • [2] R. Medzhitov, P. Preston-Hurlburt and C.J. Janeway: “A human homologue of the Drosophila Toll protein signals activation of adaptive immunity”, Nature, Vol. 388, (1997), pp. 394–397. http://dx.doi.org/10.1038/41131CrossrefGoogle Scholar

  • [3] R. Medzhitov and C. J. Janeway: “Innate immunity: the virtues of a nonclonal system of recognition”, Cell, Vol. 91, (1997), pp. 295–298. http://dx.doi.org/10.1016/S0092-8674(00)80412-2CrossrefGoogle Scholar

  • [4] W. Strober et al.: “Signalling pathways and molecular interactions of NOD1 and NOD2”, Nat. Rev. Immunol., Vol. 6, (2006), pp. 9–20. http://dx.doi.org/10.1038/nri1747CrossrefGoogle Scholar

  • [5] M. Yoneyama et al.: “The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses”, Nat. Immunol., Vol. 5, (2004), pp. 730–737. http://dx.doi.org/10.1038/ni1087CrossrefGoogle Scholar

  • [6] D.C. Kang et al.: “mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties”, Proc. Natl. Acad. Sci. U S A, Vol. 99, (2002), pp. 637–642. http://dx.doi.org/10.1073/pnas.022637199CrossrefGoogle Scholar

  • [7] M. Kovacsovics et al.: “Overexpression of Helicard, a CARD-containing helicase cleaved during apoptosis, accelerates DNA degradation”, Curr. Biol., Vol. 12, (2002), pp. 838–843. http://dx.doi.org/10.1016/S0960-9822(02)00842-4CrossrefGoogle Scholar

  • [8] J. Andrejeva et al.: “The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter”, Proc. Natl. Acad. Sci. U S A, Vol. 101, (2004), pp. 17264–17269. http://dx.doi.org/10.1073/pnas.0407639101CrossrefGoogle Scholar

  • [9] M. Yoneyama et al.: “Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity”, J. Immunol., Vol. 175, (2005), pp. 2851–2858. Google Scholar

  • [10] H. Kato et al.: “Cell Type-Specific Involvement of RIG-I in Antiviral Response”, Immunity, Vol. 23, (2005), pp. 19–28. http://dx.doi.org/10.1016/j.immuni.2005.04.010CrossrefGoogle Scholar

  • [11] H. Kato et al.: “Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses”, Nature, Vol. 441, (2006), pp. 101–105. http://dx.doi.org/10.1038/nature04734CrossrefGoogle Scholar

  • [12] S. Akira, S. Uematsu and O. Takeuchi.: “Pathogen recognition and innate immunity”, Cell, Vol. 124, (2006), pp. 783–801. http://dx.doi.org/10.1016/j.cell.2006.02.015CrossrefGoogle Scholar

  • [13] S. Akira.: “Toll receptor families: structure and function”, Semin. Immunol., Vol. 16, (2004), pp. 1–2. http://dx.doi.org/10.1016/j.smim.2003.10.001CrossrefGoogle Scholar

  • [14] R. Shimazu et al.: “MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4”, J. Exp. Med., Vol. 189, (1999), pp. 1777–1782. http://dx.doi.org/10.1084/jem.189.11.1777Google Scholar

  • [15] R. Schwandner et al.: “Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2”, J. Biol. Chem., Vol. 274, (1999), pp. 17406–17409. http://dx.doi.org/10.1074/jbc.274.25.17406CrossrefGoogle Scholar

  • [16] A. Yoshimura et al.: “Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2”, J. Immunol., Vol. 163, (1999), pp. 1–5. Google Scholar

  • [17] O. Takeuchi et al.: “Differential roles of TLR2 and TLR4 in recognition of gramnegative and gram-positive bacterial cell wall components”, Immunity, Vol. 11, (1999), pp. 443–451. http://dx.doi.org/10.1016/S1074-7613(00)80119-3Google Scholar

  • [18] L.H. Travassos et al.: “Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition”, EMBO Rep., Vol. 5, (2004), pp. 1000–1006. http://dx.doi.org/10.1038/sj.embor.7400248Google Scholar

  • [19] R. Dziarski and D. Gupta: “Staphylococcus aureus peptidoglycan is a Toll-like receptor 2 activator: a reevaluation”, Infect. Immun., Vol. 73, (2005), pp. 5212–5216. http://dx.doi.org/10.1128/IAI.73.8.5212-5216.2005CrossrefGoogle Scholar

  • [20] M.G. Netea et al.: “Does the shape of lipid A determine the interaction of LPS with Toll-like receptors?”, Trends Immunol., Vol. 23, (2002), pp. 135–139. http://dx.doi.org/10.1016/S1471-4906(01)02169-XCrossrefGoogle Scholar

  • [21] M. Hashimoto, Y. Asai and T. Ogawa: “Separation and structural analysis of lipoprotein in a lipopolysaccharide preparation from Porphyromonas gingivalis”, Int. Immunol., Vol. 16, (2004), pp. 1431–1437. http://dx.doi.org/10.1093/intimm/dxh146CrossrefGoogle Scholar

  • [22] L. Alexopoulou et al.: “Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1-and TLR2-deficient mice”, Nat. Med., Vol. 8, (2002), pp. 878–884. Google Scholar

  • [23] O. Takeuchi et al.: “Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins”, J. Immunol., Vol. 169, (2002), pp. 10–14. Google Scholar

  • [24] O. Takeuchi et al.: “Discrimination of bacterial lipoproteins by Toll-like receptor 6”, Int. Immunol., Vol. 13, (2001), pp. 933–940. http://dx.doi.org/10.1093/intimm/13.7.933CrossrefGoogle Scholar

  • [25] K. Hoebe et al.: “CD36 is a sensor of diacylglycerides”, Nature, Vol. 433, (2005), pp. 523–527. http://dx.doi.org/10.1038/nature03253CrossrefGoogle Scholar

  • [26] F. Hayashi et al.: “The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5”, Nature, Vol. 410, (2001), pp. 1099–1103. http://dx.doi.org/10.1038/35074106CrossrefGoogle Scholar

  • [27] H. Hemmi et al.: “A Toll-like receptor recognizes bacterial DNA”, Nature, Vol. 408, (2000), pp. 740–745. http://dx.doi.org/10.1038/35047123CrossrefGoogle Scholar

  • [28] D. Zhang et al.: “A Toll-like receptor that prevents infection by uropathogenic bacteria”, Science, Vol. 303, (2005), pp. 1522–1526. http://dx.doi.org/10.1126/science.1094351CrossrefGoogle Scholar

  • [29] D.M. Underhill et al.: “The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens”, Nature, Vol. 401, (1999), pp. 811–815. http://dx.doi.org/10.1038/44605CrossrefGoogle Scholar

  • [30] T. Jouault et al.: “Candida albicans phospholipomannan is sensed through Toll-like receptors”, J. Infect. Dis., Vol. 188, (2003), pp. 165–172. http://dx.doi.org/10.1086/375784CrossrefGoogle Scholar

  • [31] H. Tada et al.: “Saccharomyces cerevisiae-and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14-and Toll-like receptor 4-dependent manner”, Microbiol. Immunol., Vol. 46, (2002), pp. 503–512. Google Scholar

  • [32] S. Shoham et al.: “Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule”, J. Immunol., Vol. 166, (2001), pp. 4620–4626. Google Scholar

  • [33] G.D. Brown et al.: “Dectin-1 is a major beta-glucan receptor on macrophages”, J. Exp. Med., Vol. 196, (2002), pp. 407–412. http://dx.doi.org/10.1084/jem.20020470CrossrefGoogle Scholar

  • [34] B.N. Gantner et al.: “Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2”, J. Exp. Med., Vol. 197, (2003), pp. 1107–1117. http://dx.doi.org/10.1084/jem.20021787CrossrefGoogle Scholar

  • [35] N.C. Rogers et al.: “Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins”, Immunity, Vol. 22, (2005), pp. 507–517. http://dx.doi.org/10.1016/j.immuni.2005.03.004CrossrefGoogle Scholar

  • [36] D.M. Underhill et al.: “Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production”, Blood, Vol. 106, (2005), pp. 2543–2550. http://dx.doi.org/10.1182/blood-2005-03-1239CrossrefGoogle Scholar

  • [37] M.A. Campos et al.: “Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite”, J. Immunol., Vol. 167, (2001), pp. 416–423. Google Scholar

  • [38] C. Ropert et al.: “Macrophage signaling by glycosylphosphatidylinositol-anchored mucin-like glycoproteins derived from Trypanosoma cruzi trypomastigotes”, Microbes Infect., Vol. 4, (2002), pp. 1015–1025. http://dx.doi.org/10.1016/S1286-4579(02)01609-XCrossrefGoogle Scholar

  • [39] A.C. Oliveira et al.: “Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi”, J. Immunol., Vol. 173, (2004), pp. 5688–5696. Google Scholar

  • [40] F. Yarovinsky et al.: “TLR11 Activation of Dendritic Cells by a Protozoan Profilin-Like Protein”, Science, Vol. 308, (2005), pp. 1626–1629. http://dx.doi.org/10.1126/science.1109893CrossrefGoogle Scholar

  • [41] C. Coban et al.: “Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin”, J. Exp. Med., Vol. 201, (2005), pp. 19–25. http://dx.doi.org/10.1084/jem.20041836CrossrefGoogle Scholar

  • [42] T.R. Hawn et al.: “Leishmania major activates IL-1 alpha expression in macrophages through a MyD88-dependent pathway”, Microbes Infect., Vol. 4, (2002), pp. 763–771. http://dx.doi.org/10.1016/S1286-4579(02)01596-4CrossrefGoogle Scholar

  • [43] C.A. Scanga et al.: “Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells”, J. Immunol., Vol. 168, (2002), pp. 5997–6001. Google Scholar

  • [44] K. Bieback et al.: “Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling”, J. Virol., Vol. 76, (2002), pp. 8729–8736. http://dx.doi.org/10.1128/JVI.76.17.8729-8736.2002CrossrefGoogle Scholar

  • [45] T. Compton et al.: “Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2”, J. Virol., Vol. 77, (2003), pp. 4588–4596. http://dx.doi.org/10.1128/JVI.77.8.4588-4596.2003CrossrefGoogle Scholar

  • [46] E.A. Kurt-Jones et al.: “Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis”, Proc. Natl. Acad. Sci. U S A, Vol. 101, (2004), pp. 1315–1320. http://dx.doi.org/10.1073/pnas.0308057100CrossrefGoogle Scholar

  • [47] A. Poltorak et al.: “Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene”, Science, Vol. 282, (1998), pp. 2085–2088. http://dx.doi.org/10.1126/science.282.5396.2085Google Scholar

  • [48] L.M. Haynes et al.: “Involvement of Toll-like receptor 4 in innate immunity to respiratory syncytial virus”, J. Virol., Vol. 75, 2001, pp. 10730–10737. http://dx.doi.org/10.1128/JVI.75.22.10730-10737.2001CrossrefGoogle Scholar

  • [49] J.C. Rassa et al.: “Murine retroviruses activate B cells via interaction with Toll-like receptor 4”, Proc. Natl. Acad. Sci. U S A, Vol. 99, (2002), pp. 2281–2286. http://dx.doi.org/10.1073/pnas.042355399CrossrefGoogle Scholar

  • [50] L. Alexopoulou et al.: “Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3”, Nature, Vol. 413, (2001), pp. 732–738. http://dx.doi.org/10.1038/35099560CrossrefGoogle Scholar

  • [51] K. Tabeta et al.: “Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection”, Proc. Natl. Acad. Sci. USA, Vol. 101, (2004), pp. 3516–3521. http://dx.doi.org/10.1073/pnas.0400525101CrossrefGoogle Scholar

  • [52] T. Wang et al.: “Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis”, Nat. Med., Vol. 10, (2004), pp. 1366–1373. http://dx.doi.org/10.1038/nm1140CrossrefGoogle Scholar

  • [53] H. Hemmi et al.: “Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway”, Nat. Immunol., Vol. 3, (2002), pp. 196–200. http://dx.doi.org/10.1038/ni758CrossrefGoogle Scholar

  • [54] T. Ito et al.: “Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets”, J. Exp. Med., Vol. 195, (2002), pp. 1507–1512. http://dx.doi.org/10.1084/jem.20020207Google Scholar

  • [55] S.S. Diebold et al.: “Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA”, Science, Vol. 303, (2004), pp. 1529–1531. http://dx.doi.org/10.1126/science.1093616CrossrefGoogle Scholar

  • [56] F. Heil et al.: “Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8”, Science, Vol. 303, (2004), pp. 1526–1529. http://dx.doi.org/10.1126/science.1093620CrossrefGoogle Scholar

  • [57] J.P. Ting, D.L. Kastner and H.M. Hoffman: “CATERPILLERs, pyrin and hereditary immunological disorders”, Nat. Rev. Immunol., Vol. 6, (2006), pp. 183–195. http://dx.doi.org/10.1038/nri1788CrossrefGoogle Scholar

  • [58] M. Chamaillard et al.: “An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid”, Nat. Immunol., Vol. 4, (2003), pp. 702–707. http://dx.doi.org/10.1038/ni945CrossrefGoogle Scholar

  • [59] N. Inohara et al.: “Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease”, J. Biol. Chem., Vol. 278, (2003), pp. 5509–5512. http://dx.doi.org/10.1074/jbc.C200673200CrossrefGoogle Scholar

  • [60] S.E. Girardin et al.: “Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection”, J. Biol. Chem., Vol. 278, (2003), pp. 8869–8872. http://dx.doi.org/10.1074/jbc.C200651200CrossrefGoogle Scholar

  • [61] F. Martinon, K. Burns and J. Tschopp: “The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta”, Mol. Cell, Vol. 10, (2002), pp. 417–426. http://dx.doi.org/10.1016/S1097-2765(02)00599-3CrossrefGoogle Scholar

  • [62] V. Petrilli, S. Papin and J. Tschopp: “The inflammasome”, Curr. Biol., Vol. 15, (2005), R581. http://dx.doi.org/10.1016/j.cub.2005.07.049CrossrefGoogle Scholar

  • [63] F. Martinon, L. Agostini, E. Meylan and J. Tschopp: “Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome”, Curr. Biol. Vol. 14, (2004), pp. 1929–1934. http://dx.doi.org/10.1016/j.cub.2004.10.027CrossrefGoogle Scholar

  • [64] F. Martinon and J. Tschopp: “Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases”, Cell, Vol. 117, (2004), pp. 561–574. http://dx.doi.org/10.1016/j.cell.2004.05.004CrossrefGoogle Scholar

  • [65] T.D. Kanneganti et al.: “Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3”, Nature, Vol. 440, (2006), pp. 233–236. http://dx.doi.org/10.1038/nature04517CrossrefGoogle Scholar

  • [66] S. Mariathasan et al.: “Cryopyrin activates the inflammasome in response to toxins and ATP”, Nature, Vol. 440, (2006), pp. 228–232. http://dx.doi.org/10.1038/nature04515CrossrefGoogle Scholar

  • [67] F. Martinon et al.: “Gout-associated uric acid crystals activate the NALP3 inflammasome”, Nature, Vol. 440, (2006), pp. 237–241. http://dx.doi.org/10.1038/nature04516CrossrefGoogle Scholar

  • [68] F.S. Sutterwala et al.: “Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1”, Immunity, Vol. 24, (2006), pp. 317–327. http://dx.doi.org/10.1016/j.immuni.2006.02.004Google Scholar

  • [69] E.A. Miao et al.: “Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf”, Nat. Immunol., Vol. 7, (2006), pp. 569–575. http://dx.doi.org/10.1038/ni1344CrossrefGoogle Scholar

  • [70] L. Franchi et al.: “Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in Salmonella-infected macrophages”, Nat. Immunol., Vol. 7, (2006), pp. 576–582. http://dx.doi.org/10.1038/ni1346CrossrefGoogle Scholar

  • [71] D.S. Zamboni et al.: “The Bircle cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection”, Nat. Immunol., Vol. 7, (2006), pp. 318–325. http://dx.doi.org/10.1038/ni1305CrossrefGoogle Scholar

  • [72] A.B. Molofsky et al.: “Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection”, J. Exp. Med., Vol. 203, (2006), pp. 1093–1104. http://dx.doi.org/10.1084/jem.20051659CrossrefGoogle Scholar

  • [73] T. Ren et al.: “Flagellin-Deficient Legionella Mutants Evade Caspase-1-and Naip5-Mediated Macrophage Immunity”, PLoS Pathogens, Vol. 2, (2006), e18. http://dx.doi.org/10.1371/journal.ppat.0020018CrossrefGoogle Scholar

  • [74] T. Kawai and S. Akira: “Innate immune recognition of viral infection”, Nat. Immunol., Vol. 7, (2006), pp. 131–137. http://dx.doi.org/10.1038/ni1303CrossrefGoogle Scholar

  • [75] J. Melchjorsen et al.: “Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in a cell-type-specific manner”, J. Virol., Vol. 79, (2005), pp. 12944–12951. http://dx.doi.org/10.1128/JVI.79.20.12944-12951.2005CrossrefGoogle Scholar

  • [76] E. Foy et al.: “Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling”, Proc. Natl. Acad. Sci. U S A, Vol. 102, (2005), pp. 2986–2991. http://dx.doi.org/10.1073/pnas.0408707102CrossrefGoogle Scholar

  • [77] T.H. Chang et al.: “Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation”, Microbes Infect., Vol. 8, (2006), pp. 157–171. http://dx.doi.org/10.1016/j.micinf.2005.06.014CrossrefGoogle Scholar

  • [78] T. Kawai et al.: “IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I interferon induction”, Nat. Immunol., Vol. 6, (2005), pp. 981–988. http://dx.doi.org/10.1038/ni1243CrossrefGoogle Scholar

  • [79] R.B. Seth et al.: “Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3”, Cell, Vol. 122, (2005), pp. 669–682. http://dx.doi.org/10.1016/j.cell.2005.08.012CrossrefGoogle Scholar

  • [80] L.G. Xu et al.: “VISA is an adapter protein required for virus-triggered IFN-beta signaling”, Mol. Cell, Vol. 19, (2005), pp. 727–740. http://dx.doi.org/10.1016/j.molcel.2005.08.014CrossrefGoogle Scholar

  • [81] E. Meylan et al.: “Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus”, Nature, Vol. 437, (2005), pp. 1167–1172. http://dx.doi.org/10.1038/nature04193CrossrefGoogle Scholar

  • [82] Q. Sun et al.: “The specific and essential role of MAVS in antiviral innate immune responses”, Immunity, Vol. 24, (2006), pp. 633–642. http://dx.doi.org/10.1016/j.immuni.2006.04.004CrossrefGoogle Scholar

  • [83] H. Kumar et al.: “Essential role of IPS-1 in innate immune responses against RNA viruses”, J. Exp. Med., Vol. 203, (2006), pp. 1795–1803. http://dx.doi.org/10.1084/jem.20060792CrossrefGoogle Scholar

  • [84] S. Rothenfusser et al.: “The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I”, J. Immunol., Vol. 175, (2005), pp. 5260–5268. Google Scholar

  • [85] K. Kawane et al.: “Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation”, Nat. Immunol., Vol. 4, (2003), pp. 138–144. http://dx.doi.org/10.1038/ni881CrossrefGoogle Scholar

  • [86] K. Suzuki et al.: “Activation of target-tissue immune-recognition molecules by double-stranded polynucleotides”, Proc. Natl. Acad. Sci. U S A, Vol. 96, (1999), pp. 2285–2290. http://dx.doi.org/10.1073/pnas.96.5.2285CrossrefGoogle Scholar

  • [87] K.J. Ishii et al.: “Genomic DNA released by dying cells induces the maturation of APCs”, J. Immunol., Vol. 167, (2001), pp. 2602–2607. Google Scholar

  • [88] K.J. Ishii et al.: “A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA”, Nat. Immunol., Vol. 7, (2006), pp. 40–48. http://dx.doi.org/10.1038/ni1282CrossrefGoogle Scholar

  • [89] D.B. Stetson and R. Medzhitov: “Recognition of cytosolic DNA activates an IRF3-dependent innate immune response”, Immunity, Vol. 24, (2006), pp. 93–103. http://dx.doi.org/10.1016/j.immuni.2005.12.003CrossrefGoogle Scholar

About the article

Published Online: 2006-09-01

Published in Print: 2006-09-01


Citation Information: Open Life Sciences, Volume 1, Issue 3, Pages 299–313, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-006-0024-4.

Export Citation

© 2006 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marcello Iriti and Franco Faoro
Mycopathologia, 2007, Volume 164, Number 2, Page 57

Comments (0)

Please log in or register to comment.
Log in