Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 1, Issue 3


Volume 10 (2015)

Phenotypic characterisation of extreme growth-selected mouse lines: An important prerequisite for future QTL analysis

Ulla Renne / Gerhard Dietl / Martina Langhammer / Charlotte Rehfeldt / Karin Nürnberg / Siegfried Kuhla / Lutz Bünger
  • SAC, Sustainable Livestock Systems Group, Sir Stephen Watson Building, Bush Estate, Penicuik, Midlothian, EH26 0PH, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-09-01 | DOI: https://doi.org/10.2478/s11535-006-0026-2


A unique set of seven mouse lines, long-term selected for high growth, from different laboratories around the world has been comprehensively compared to evaluate these resources for future QTL and gene mapping for growth traits. The heaviest line (DUH) was 40% (males) to 44% (females) heavier than the smallest line (ROH) at birth, and 105% (males) to 114% (females) heavier at 98 d. Body conformation (body length and width, body areas), body composition (dry matter, fat, fatty acid composition, organ weights), and skeletal muscle cellularity also differed substantially. DUH was more than 20% longer (12.3 cm) compared to the shortest line ROH (9.7 cm). DAH (22.5%) had the highest percentage of gonadal fat and the leanest was BEH (7.7%). Line BEH (0.49 g) showed the highest weight for the left M. rectus femoris, which was 2.1 times higher, compared to ROH (0.23 g). These results suggest that different alleles, and possibly different physiological pathways, have contributed to the selection response in the different lines. Therefore these selection lines are an important tool with which to identify the genetic and physiological basis of growth as they may contain many, if not all, growth promoting alleles.

Keywords: Mouse; growth; long-term; selection; body conformation; body composition

  • [1] H.D. Goodale: “A study of the inheritance of body weight in the albino mouse by selection”, J. Hered., Vol. 29, (1938), pp. 101–112. CrossrefGoogle Scholar

  • [2] J.W. MacArthur: “Selection for large and small body size in the house mouse”, Genetics, Vol. 34, (1949), pp. 194–209. Google Scholar

  • [3] E.J. Eisen: “Testing quantitative genetic selection theory”, In: E.J. Eisen (Ed.): The Mouse in Animal Genetics and Breeding Research, Imperial College Press, London, 2005. Google Scholar

  • [4] L. Bünger and W.G. Hill: “Genetics of body composition and metabolic rate”, In: E.J. Eisen (Ed.): The Mouse in Animal Genetics and Breeding Research, Imperial College Press, London, 2005. Google Scholar

  • [5] L. Bünger, U. Renne and R.C. Buis: “Body weight limits in mice — Long-term selection and single genes”, In: E.C.R. Reeve (Ed.): Encyclopedia of Genetics, Fitzroy Dearborn Publishers, London, pp. 337–360, 2001. Google Scholar

  • [6] L. Bünger, U. Renne, G. Dietl and S. Kuhla: “Long-term selection for protein amount over 70 generations in mice”, Genet. Res., Vol. 72, (1998), pp. 93–109. http://dx.doi.org/10.1017/S0016672398003401CrossrefGoogle Scholar

  • [7] L. Bünger, A.H. Laidlaw, G. Bulfield, E.J. Eisen, J.F. Medrano, G.E. Bradford, F. Pirchner, U. Renne, W. Schlote and W.G. Hill: “Inbred lines of mice derived from long-term on growth selected lines: unique resources for mapping growth genes”, Mamm. Genome, Vol. 12, (2001), pp. 678–686. http://dx.doi.org/10.1007/s00335-001-3018-6CrossrefGoogle Scholar

  • [8] M.F.W. Festing: “Inbred strains of mice: a Vital Resource for Biomedical Research”, Mouse Genome, Vol. 95, (1997), pp. 845–855. Google Scholar

  • [9] E.S. Lander and D. Botstein: “Mapping mendelian factors underlying quantitative traits using RFLP linkage maps”, Genetics, Vol. 121, (1989), pp. 185–199. Google Scholar

  • [10] R.H. Waterston et al.: “Initial sequencing and comparative analysis of the mouse genome”, Nature, Vol. 420, (2002) pp. 520–562. http://dx.doi.org/10.1038/nature01262CrossrefGoogle Scholar

  • [11] D.S. Falconer and T.F.C. Mackay: Introduction to quantitative genetics, 4th ed., Longman Group Ltd., Essex, 1996. Google Scholar

  • [12] M. Lynch and B. Walsh: Genetics and Analysis of Quantitative Traits, Sinauer Associates, Inc., Sunderland, 1998. Google Scholar

  • [13] G.A. Brockmann and M.R. Bevova: “Using mouse models to dissect the genetics of obesity”, Trends Genet., Vol. 18, (2002), pp. 367–376. http://dx.doi.org/10.1016/S0168-9525(02)02703-8CrossrefGoogle Scholar

  • [14] S. Kuhla, U. Renne, M. Klein and W.B. Souffrant: “Contribution to analysis of mice bodies”, 39. Wiss. Tagung der Gesellschaft für Versuchstierkunde (GV-SOLAS) 10-13.09.2001, Ulm, Tagungsband, p. 74. Google Scholar

  • [15] K. Nürnberg, K. Fischer, G. Nürnberg, U. Küchenmeister, D. Klosowska, G. Eliminowska-Wenda, I. Fiedler and K. Ender: “Effects of dietary olive and linseed oil on lipid composition, meat quality, sensory characteristics and muscle structure in pigs”, Meat Sci., Vol. 70, (2005), pp. 63–74. http://dx.doi.org/10.1016/j.meatsci.2004.12.001CrossrefGoogle Scholar

  • [16] A.B. Novikoff, W. Shin and J. Drucker: “Mitochondrial localization of oxidative enzymes staining results with two tetrazolium salts”, J. Biophys. Biochem. Cytol., Vol. 9, (1961), pp. 47–61. http://dx.doi.org/10.1083/jcb.9.1.47CrossrefGoogle Scholar

  • [17] B. Romeis: Mikroskopische Technik, 16th ed., Urban & Schwarzenberg, München, 1989. Google Scholar

  • [18] C. Rehfeldt and K. Walther: “A combined assay for DNA, protein, and incorporated [3H] label in cultured muscle cells”, Anal. Biochem., Vol. 251, (1997), pp. 294–297. http://dx.doi.org/10.1006/abio.1997.2285CrossrefGoogle Scholar

  • [19] N. Oksbjerg, J.S. Petersen, I.L. Sorensen, P. Henckel, M. Vestergaard, P. Ertbjerg, A.J. Moller, C. Bejerholm and S. Stoier: “Long-term changes in performance and meat quality of Danish Landrace pigs: a study on a current compared with an unimproved genotype”, Anim. Sci., Vol. 71, (2000), pp. 81–92. Google Scholar

  • [20] P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H. Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson and D.C. Klenk: “Measurement of protein using bicinchoninic acid”, Anal. Biochem., Vol. 150, (1985), pp. 76–85. http://dx.doi.org/10.1016/0003-2697(85)90442-7CrossrefGoogle Scholar

  • [21] F.J. Richards: “A flexible growth function for empirical use”, J. Exp. Bot., Vol. 10, (1959), pp. 290–300. CrossrefGoogle Scholar

  • [22] U. Renne, M. Langhammer, E. Wytrwat, G. Dietl and L. Bünger: “Genetic-statistical analysis of growth in selected and unselected mouse lines”, J. Exp. Anim. Sci., Vol. 42, (2003), pp. 218–232. http://dx.doi.org/10.1016/S0939-8600(03)80004-4CrossrefGoogle Scholar

  • [23] I.M. Hastings and W.G. Hill: “A note on the effect of different selection criteria on carcass composition in mice”, Anim. Prod., Vol. 48, (1989), pp. 229–233. http://dx.doi.org/10.1017/S0003356100003949CrossrefGoogle Scholar

  • [24] P.D. Keightley and D.J. Gaffney: “Functional constrains and frequency of deleterious mutations in noncoding DNA of rodents”, Proc. Natl. Acad. Sci. USA, Vol. 100, (2003), pp. 13402–13406. http://dx.doi.org/10.1073/pnas.2233252100CrossrefGoogle Scholar

  • [25] P.M. Corva and J.F. Medrano: “Quantitative trait loci (QTLs) mapping for growth traits in the mouse: A review”, Genet. Sel. Evol., Vol. 33, (2001), pp. 105–132. http://dx.doi.org/10.1051/gse:2001112CrossrefGoogle Scholar

  • [26] L. Perusse, T. Rankinen, A. Zuberi, Y.C. Chagnon, S.J. Weisnagel, G. Agryropoulos, B. Walts, E.E. Snyder and C. Bouchard: “The human obesity gene map: the 2004 update”, Obes. Res., Vol. 13, (2005), pp. 381–490. Google Scholar

  • [27] D. Pomp: “Genetic dissection of obesity in polygenic animal models”, Behav. Gen., Vol. 27, (1997), pp. 285–306. http://dx.doi.org/10.1023/A:1025631813018CrossrefGoogle Scholar

  • [28] G.A. Brockmann, J. Kratzsch, C.S. Haley, U. Renne, M. Schwerin and S. Karle: “Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F2 variance of growth and obesity in DU6i x DBA/2 mice”, Genome Res., Vol. 12, (2000), pp. 1941–1957. http://dx.doi.org/10.1101/gr.GR1499RCrossrefGoogle Scholar

  • [29] G.A. Brockmann, U. Renne, K. Kopplow and P. Das: “Genetic markers for the detection of quantitative trait loci with special consideration of body weight and fat”, Genetics, Vol. 150, (1998), pp. 369–381. Google Scholar

  • [30] G.A. Brockmann, C.S. Haley, E. Wolf, S. Karle, J. Kratzsch, U. Renne, M. Schwerin and A. Hoeflich: “Genome-wide search for loci controlling serum IGF-binding protein levels of mice”, FASEB J., Vol. 15, (2001), pp. 978–987. http://dx.doi.org/10.1096/fj.00-0391comCrossrefGoogle Scholar

  • [31] K.A. Rance, S.C. Heath and P.D. Keightley: “Mapping quantitative trait loci for body weight on the X chromosome in mice. II. Analysis of congenic backcrosses”, Genet. Res., Vol. 70, (1997), pp. 125–133. http://dx.doi.org/10.1017/S0016672397002929CrossrefGoogle Scholar

  • [32] K.A. Rance, W.G. Hill and P.D. Keightley: “Mapping quantitative trait loci for body weight on the X chromosome in mice. I. Analysis of a reciprocal F-2 population”, Genet. Res., Vol. 70, (1997), pp. 117–124. http://dx.doi.org/10.1017/S0016672397002917CrossrefGoogle Scholar

  • [33] F. Oliver, J.K. Christians, X.J. Liu, S. Rhind, V. Verma, C. Davison, S.D.M. Brown, P. Denny and P.D. Keightley: “Regulatory variation at glypican-3 underlies a major growth QTL in mice”, PLoS Biology, Vol. 3, (2005), pp. 872–877. http://dx.doi.org/10.1371/journal.pbio.0030135CrossrefGoogle Scholar

  • [34] P.D. Keightley, T. Hardge, L. May and G.A. Bulfield: “A genetic-map of quantitative trait loci for body weight in the mouse”, Genetics, Vol. 142, (1996), pp. 227–235. Google Scholar

  • [35] M.F. Allan, E.J. Eisen and D. Pomp: “The m16 mouse: an outbred animal model of early onset polygenic and diabesity”, Obes. Res., Vol. 12, (2004), pp. 1397–1407. http://dx.doi.org/10.1038/oby.2004.176CrossrefGoogle Scholar

  • [36] J.L. Rocha, E.J. Eisen, L.D. Van Vleck and D. Pomp: “A large-sample QTL study in mice: I. Growth”, Mamm. Genome, Vol. 15, (2004), pp. 83–99. http://dx.doi.org/10.1007/s00335-003-2312-xCrossrefGoogle Scholar

  • [37] J.L. Rocha, E.J. Eisen, L.D. Van Vleck and D. Pomp: “A large-sample QTL study in mice: II. Body composition”, Mamm. Genome, Vol. 15, (2004), pp. 100–113. http://dx.doi.org/10.1007/s00335-003-2308-6CrossrefGoogle Scholar

  • [38] P.M. Corva, S. Horvat and J.F. Medrano: “Quantitative trait loci affecting growth in high growth (hg) mice”, Mamm. Genome, Vol. 12, (2001), pp. 284–290. http://dx.doi.org/10.1007/s003350010275CrossrefGoogle Scholar

  • [39] R. Wu, C.X. Ma, W. Hou, P.M. Corva and J.F. Medrano: “Functional mapping of quantitative trait loci that interact with the hg mutation to regulate growth trajectories in mice”, Genetics, Vol. 171, (2005), pp. 239–249. http://dx.doi.org/10.1534/genetics.104.040162CrossrefGoogle Scholar

  • [40] G.E. Bradford and T.R. Famula: “Evidence for a major gene for rapid postweaning growth in mice”, Genet. Res., Vol. 44, (1984), pp. 293–308. http://dx.doi.org/10.1017/S0016672300026537CrossrefGoogle Scholar

  • [41] S. Horvat and J.F. Medrano: “The high growth (hg) locus maps to a deletion in mouse chromosome-10”, Genomics, Vol. 36, (1996), pp. 546–549. http://dx.doi.org/10.1006/geno.1996.0504CrossrefGoogle Scholar

  • [42] S. Horvat and J.F. Medrano: “Lack of Socs2 expression causes the high-growth phenotype in mice”, Genomics, Vol. 72, (2001), pp. 209–212. http://dx.doi.org/10.1006/geno.2000.6441CrossrefGoogle Scholar

  • [43] L. Varga, G. Müller, G. Szabo, O. Pinke O, E. Korom, B. Kovacs, L. Patthy and M. Soller: “Mapping modifiers affecting muscularity of the myostatin mutant (MstnCmpt-dl1Abc ) Compact mouse”, Genetics, Vol. 165, (2003), pp. 257–267. Google Scholar

  • [44] N. Borchers, N. Reinsch and E. Kalm: “The number of ribs and vertebrae in a Pietrain cross: variation, heritability and effects on performance traits”, J. Anim. Breed. Gen., Vol. 121, (2004), pp. 392–403. http://dx.doi.org/10.1111/j.1439-0388.2004.00482.xCrossrefGoogle Scholar

  • [45] S. Mikawa, T. Hayashi, M. Nii, S. Shimanuki, T. Morozumi and T. Awata: “Two quantitative trait loci on Sus scrofa chromosomes 1 and 7 affecting the number of vertebrae”, J. Anim. Sci., Vol. 83, (2002), pp. 2247–2254. Google Scholar

  • [46] D.N. Lori, J.M. MacLeay and A.S. Turner: “Variation in the lumbar spine of the mature ewe: a descriptive study”, Vet. Radiol. Ultrasound, Vol. 46, (2005), pp. 105–107. http://dx.doi.org/10.1111/j.1740-8261.2005.00021.xCrossrefGoogle Scholar

  • [47] L. Bünger, G. Ott, L. Varga, W. Schlote, C. Rehfeldt, U. Renne, J.L. Williams and W.G. Hill: “Marker-assisted introgression of the compact mutant myostatin allele Mstn Cmpt-dl1Abc into a mouse line with extreme growth — effects on body composition and muscularity”, Genet. Res. Vol. 84, (2004), pp. 161–173. http://dx.doi.org/10.1017/S0016672304007165CrossrefGoogle Scholar

  • [48] L. Bünger, G. Ott, L. Varga, W. Schlote, C. Rehfeldt, U. Renne, J.L. Williams and W.G. Hill: “Marker assisted introgression of the compact mutant myostatin allele: Mstn Cmpt-dl1Abc into a mouse line with extreme growth: effects on body composition, muscularity and skeletal muscle cellularity”, Arch. Anim. Breed., Vol. 48, (2005), pp. 88–97. Google Scholar

  • [49] L. Varga, G. Szabo, A. Darvasi, G. Müller, M. Sass and M. Soller: “Inheritance and mapping of compact (cmpt), a new mutation causing hypermuscularity in mice”, Genetics, Vol. 147, (1997), pp. 755–764. Google Scholar

  • [50] L. Grobet, D. Poncelet, L.J. Royo, B. Brouwers, D. Pirottin, C. Michaux, F. Menissier, M. Zanotti, S. Dunner and M. Georges: “Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle”, Mamm. Genome, Vol. 9, (1998), pp. 210–213. http://dx.doi.org/10.1007/s003359900727CrossrefGoogle Scholar

  • [51] M. Ansay and R. Hanset: “Anatomical, physiological and biochemical differences between conventional and double-muscled cattle in the Belgian blue and white”, Livestock Prod. Sci., Vol. 6, (1979), pp. 5–13. http://dx.doi.org/10.1016/0301-6226(79)90027-7CrossrefGoogle Scholar

  • [52] A.C. McPherron and S.L. Lee: “Suppression of body fat accumulation in myostatin-deficient mice”, J. Clin. Invest., Vol. 109, (2002), pp. 595–601. http://dx.doi.org/10.1172/JCI200213562CrossrefGoogle Scholar

  • [53] C. Rehfeldt, G. Ott, D.E. Gerrard, L. Varga, W. Schlote, J.L. Williams, U. Renne and L. Bünger: “Effects of the Compact mutant myostatin Allele MstnCmpt-dl1Abc introgressed into a high growth mice line on skeletal muscle cellularity”, J. Muscle Res. Cell M., Vol. 26, (2005), pp. 103–112. http://dx.doi.org/10.1007/s10974-005-1099-7CrossrefGoogle Scholar

  • [54] J.H. Holmes and C.R. Ashmore: “A histochemical study of development of muscle fibre type and size in normal and ‘double muscled’ cattle”, Growth, Vol. 36, (1972), pp. 351–372. Google Scholar

  • [55] J. Wegner, E. Albrecht, I. Fiedler, F. Teuscher, H.J. Papstein and K. Ender: “Growth-and breed-related changes of muscle fibre characteristics in cattle”, J. Anim. Sci., Vol. 78, (2000), pp. 1485–1496. CrossrefGoogle Scholar

  • [56] R.L. West: “Red to white fibre ratios as an index of double muscling in beef cattle”, J. Anim. Sci., Vol. 38, (1974), pp. 1165–1175. CrossrefGoogle Scholar

  • [57] J.H. Holmes, C.R. Ashmore and D.W. Robinson: “Effects of stress on cattle with hereditary muscular hypertrophy”, J. Anim. Sci., Vol. 36, (1973), pp. 684–694. CrossrefGoogle Scholar

  • [58] C. Rehfeldt and L. Bünger: “Effects of long-term selection of laboratory mice on characters of muscle growth and structure”, Arch. Anim. Breed., Vol. 33, (1990), pp. 507–516. Google Scholar

  • [59] C. Rehfeldt and E. Otto: “Muscle structure changes after selection for growth and fitness — studies on laboratory mice”, Arch. Anim. Breed., Vol. 28, (1985), pp. 465–473. Google Scholar

  • [60] R. Schadereit, C. Rehfeldt, K. Krawielitzki, M. Klein, E. Kanitz and S. Kuhla: “Protein turnover, body composition, muscle characteristics and blood hormones in response to different direction of growth selection in mice”, J. Anim. Feed. Sci., Vol. 7, (1998), pp. 333–352. CrossrefGoogle Scholar

  • [61] C. Rehfeldt, K. Walther, E. Albrecht, G. Nürnberg, U. Renne and L. Bünger: “Intrinsic properties of muscle satellite cells are changed in response to long-term selection of mice for different growth traits”, Cell Tissue Res., Vol. 310, (2002), pp. 339–348. http://dx.doi.org/10.1007/s00441-002-0637-5CrossrefGoogle Scholar

  • [62] V. Jakubec, P. Komender, G. Nitter, D. Fewson and Z. Soukopova: “Crossbreeding in farm animals. I. Analysis of complete Diallel experiments by means of three models with application to poultry”, J. Anim. Breed. Genet., Vol. 104, (1987), pp. 283–294. http://dx.doi.org/10.1111/j.1439-0388.1987.tb00135.xCrossrefGoogle Scholar

About the article

Published Online: 2006-09-01

Published in Print: 2006-09-01

Citation Information: Open Life Sciences, Volume 1, Issue 3, Pages 345–375, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-006-0026-2.

Export Citation

© 2006 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

S. Görs, M. Kucia, M. Langhammer, P. Junghans, and C.C. Metges
Journal of Dairy Science, 2009, Volume 92, Number 2, Page 632

Comments (0)

Please log in or register to comment.
Log in