Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 1, Issue 3


Volume 10 (2015)

Biological activity of vanadium compounds

Anna Goc
Published Online: 2006-09-01 | DOI: https://doi.org/10.2478/s11535-006-0029-z


Vanadium compounds are characterised by a broad spectrum of action in vivo and in vitro. Their insulin-mimetic activity is manifested in their ability to normalize changes observed in both clinical and experimental diabetes (i.e. hyperglycaemia, hyperlipidaemia, lowered cell sensitivity to insulin) through the regulation of carbohydrate and lipid metabolism and the removal of secondary symptoms of this disease (as e.g. retinopathy, cardiomyopathy, nephropathy). Nevertheless, vanadium is considered to be a toxic element in both cationic and anionic form, although the latter type has more serious side effects. This is accounted for by the faster absorption of anionic forms, although the chemical structure, geometry, and the manner of synthesis of its derivatives also contributes to this elevated toxicity. Besides their antidiabetic properties, vanadium derivatives have also been observed to influence processes related to mitogenic cell responses (apoptosis, proliferation, neoplastic transformation). However, both anti-and pro-neoplastic properties of vanadium are reported.

Keywords: Vanadium; diabetes; cytotoxicity

  • [1] R.R. Moskalyk and A.M. Alfantazi: “Processing of vanadium: a review”, Miner. Engineer., Vol. 16, (2003), pp. 793–805. http://dx.doi.org/10.1016/S0892-6875(03)00213-9CrossrefGoogle Scholar

  • [2] S. Verma, M.C Cam and J.H. McNeill: “Nutritional factors that can favorably influence the glucose/insulin system: Vanadium”, J. Am. Coll. Nutr., Vol. 17, (1998), pp. 11–18. CrossrefGoogle Scholar

  • [3] W. Seńczuk: Toksykologia, Państwowy Zakład Wydawnictw Lekarskich, Warszawa, 1994 (in Polish). Google Scholar

  • [4] F.H. Nielsen and E.O. Uthus: “The essentiality and metabolism of vanadium”, In: N.D. Chasteen (Ed.): Vanadium in Biological Systems, Kluwer Academic Publishers. Dordrecht, The Netherlands, 1990, pp. 51–62. Google Scholar

  • [5] R.J. French and P.J.H. Jones: “Role of vanadium in nutrition: metabolism, essentiality and dietary considerations”, Life Sci., Vol. 52, (1993), pp. 339–346. http://dx.doi.org/10.1016/0024-3205(93)90146-TCrossrefGoogle Scholar

  • [6] E. Rojas, L.A. Herrera, L.A. Poirier and P. Ostrosky-Wegman: “Are metals dietary carcinogens?”, Mutat. Res., Vol. 443, (1999), pp. 157–181. Google Scholar

  • [7] B. Mukherjee, B. Patra, S. Mahapatra, P. Banerjee, A. Tiwari and M. Chatterjee: “Vanadium — an element of biological significance”, Toxicol. Lett., Vol. 150, (2004), pp. 135–143. http://dx.doi.org/10.1016/j.toxlet.2004.01.009CrossrefGoogle Scholar

  • [8] K.H. Thompson and C. Orvig: “Coordination chemistry of vanadium in metallopharmaceutical candidate compounds”, Coord. Chem. Rev., Vol. 219–221, (2001), pp. 1033–1053. http://dx.doi.org/10.1016/S0010-8545(01)00395-2CrossrefGoogle Scholar

  • [9] S.M. Brichard and J.C. Henquin: “The role of vanadium in the management of diabetes”, TIPS, Vol. 16, (1995), pp. 265–270. Google Scholar

  • [10] A. Kiersztan: “Insulinopodobne działanie związków wanadu”, Post. Biochem., Vol. 44, (1998), pp. 275–282 (in Polish). Google Scholar

  • [11] M. Radike, D. Warshawsky, J. Caruso, R. Goth-Goldstein, R. Reilman, T. Collins, M. Yaeger, J. Wang, N. Vela, L. Olsen and J. Schneider: “Distribution and accumulation of mixture of arsenic, cadmium, chromium, nickel and vanadium in mouse small intestine, kidneys, pancreas and femur following oral administration in water or feed”, J. Toxicol. Environ. Health Am., Vol. 13, (2002), pp. 2029–2059. http://dx.doi.org/10.1080/00984100290071324CrossrefGoogle Scholar

  • [12] X.G. Yang, K. Wang, J. Lu and D.C. Crans: “Membrane transport of vanadium compounds and interaction with the erythrocyte membrane”, Coordin. Chem. Rev., Vol. 273, (2003), pp. 103–111. http://dx.doi.org/10.1016/S0010-8545(02)00247-3CrossrefGoogle Scholar

  • [13] X.G. Yang, X.D. Yang, L. Yuan, K. Wang and D.C. Crans: “The permability and cytotoxicity of insulin-mimetic vanadium compounds”, Pharmaceut. Res., Vol. 21, (2004), pp. 1026–1033. http://dx.doi.org/10.1023/B:PHAM.0000029293.89113.d5CrossrefGoogle Scholar

  • [14] A. Stern, X. Yin, S.S. Tsang, A.J. Davison and J. Moon: “Vanadium as modulator of cellular regulatory cascades and oncogene expression”, Biochem. Cell Biol., Vol. 287, (1993), pp. 8–17. Google Scholar

  • [15] G.R. Hayes and D.H. Lockwood: “Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide”, Proc. Natl. Acad. Sci. USA, Vol. 84, (1987), pp. 8115–8119. http://dx.doi.org/10.1073/pnas.84.22.8115CrossrefGoogle Scholar

  • [16] A.M. Evangelou: “Vanadium in cancer treatment”, Crit. Rev. Oncol. Hematol., Vol. 42, (2002), pp. 246–265. Google Scholar

  • [17] J.J. Correia, L.D. Lipscomb, J.C. Dabrowiak, N. Isern and J. Zubieta: “Cleavage of tubulin by vanadate ion”, Arch. Biochem. Biophys., Vol. 309, (1994), pp. 94–104. http://dx.doi.org/10.1006/abbi.1994.1090CrossrefGoogle Scholar

  • [18] S. Lobert, N. Isern, B.S. Hennington and J.J. Correia: “Interaction of tubulin and microtubule with vandate oligomers”, Biochemistry, Vol. 33, (1994), pp. 6244–6251. http://dx.doi.org/10.1021/bi00186a026CrossrefGoogle Scholar

  • [19] M. Altamirano-Lozano: “Genotoxic effects of vanadium compounds”, Invest. Clin., Vol. 39, (1998), pp. 39–47. Google Scholar

  • [20] D. Lapenna, G. Ciofani, C. Bruno, S.D. Pierdomenico, L. Giuliani, M.A. Giamberardino and F. Cuccurullo: “Vanadyl as catalyst of human lipoproteid oxidation”, Biochem. Pharmacol., Vol. 63, (2002), pp. 375–380. http://dx.doi.org/10.1016/S0006-2952(01)00849-8CrossrefGoogle Scholar

  • [21] Leonard SS, Harris DK, Shi X: “Metal-induced oxidative stress and signal transduction”, Free Radical Biol. Med., Vol. 37, (2004), pp. 1921–1942. http://dx.doi.org/10.1016/j.freeradbiomed.2004.09.010CrossrefGoogle Scholar

  • [22] A.E. Lawson, H. Bao, A. Wickrema, S.M. Jacobs-Helber and S.T. Sawyer: “Phosphatase inhibition promotes antiapoptotic but not proliferative signaling pathways in erythropoietin-dependent HCD57 cell”, Blood, Vol. 96, (2000), pp. 2084–2092. Google Scholar

  • [23] A. Morinville, D. Maysinger and A. Shaver: “From Vanadis to Atropos: vanadium compounds as pharmacological tool in cell signaling”, TIPS, Vol. 19, (1998), pp. 452–460. Google Scholar

  • [24] R. Bruck, Z. Halpern, H. Aeed, Y. Shechter and S.J.D. Karlish: “Vanadyl ion stimulate K+uptake into isolated perfused rat liver via the Na+/K+-pump by a tyrosine kinase-dependent mechanism”, Eur. J. Physiol., Vol. 435, (1998), pp. 610–616. http://dx.doi.org/10.1007/s004240050561CrossrefGoogle Scholar

  • [25] A.R. Totan and M. Greabu: “Effect of chronic hyperglycemia and vanadate treatment on erythrocyte (Na,K)-ATPase and Mg-ATPase in streptozotocin diabetic rats”, Acta Pol. Pharm., Vol. 59, (2002), pp. 307–311. Google Scholar

  • [26] S. Marshall and R. Okuyama: “Differential effects of vanadate on UDP-N-acetylglucosaminyltransferase activity derived from cytosol and nucleosol”, Biochem. Biophys. Res. Commun., Vol. 318, (2004), pp. 911–915. http://dx.doi.org/10.1016/j.bbrc.2004.04.101CrossrefGoogle Scholar

  • [27] S. Semiz and J.H. McNeill: “Oral treatment with vanadium of Zucker fatty rats activates muscles glycogen synthesis and insulin-stimulated protein phosphatase-1 activity”, Mol. Cell. Biochem., Vol. 236, (2002), pp. 123–131. http://dx.doi.org/10.1023/A:1016116700632CrossrefGoogle Scholar

  • [28] Y. Hayashi and T. Kimurat: “The effects of vanadium compounds on the activation adenylate cyclase from rat adrenal membrane”, Biochem. Biophys. Acta, Vol. 869, (1994), pp. 29–36. Google Scholar

  • [29] M. Bencherif and R.J. Lukas: “Vanadate amplifies receptor-mediated accumulation of inositol trisphosphatase and inhibits inositol tris-and tetrakisphosphatase activities”, Neurosci. Lett., Vol. 134, (1992), pp. 157–160. http://dx.doi.org/10.1016/0304-3940(92)90505-2CrossrefGoogle Scholar

  • [30] J. Li, S. Dokka, L. Wang, X. Shi, V. Casranova, Y. Yan, M. Costa and C. Huang: “Activation of a PKC is required for vanadate-induced phosphorylation of protein kinase B (Akt), but not p70s6k in mouse epidermal JB6 cell”, Mol. Cell. Biochem., Vol. 255, (2004), pp. 217–225. http://dx.doi.org/10.1023/B:MCBI.0000007277.90298.24CrossrefGoogle Scholar

  • [31] A. Kita, S. Uotani, H. Kuwahara, R. Takahashi, K. Oshima, H. Yamasaki, H. Mizoguchi, T. Hayakawa, Y. Nagayama, Y. Yamaguchi and K. Euguchi: “Vanadate enhances leptin-induced activation of JAK/STAT pathway in CHO cells”, Biochem. Biophys. Res. Commun., Vol. 302, (2003), pp. 805–809. http://dx.doi.org/10.1016/S0006-291X(03)00264-XCrossrefGoogle Scholar

  • [32] T. Motoyashiki, M. Miyake, A. Yoshida, T. Morita and H. Ueki: “A vanadyl sulphate-bovine serum albumin complex stimulated the release o lipoprotein lipase activity from isolated rat fat pads through an increase in the cellular content of cAMP and myo-inositol 1,4,5-trisphosphate”, Biol. Pharm., Vol. 22, (1999), pp. 780–786. Google Scholar

  • [33] M.Z. Mehdi, S.K. Pandey, J.F. Theberge and A.K. Srivastava: “Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium”, Cell Biochem Biophys., Vol. 44, (2006), pp. 73–81. http://dx.doi.org/10.1385/CBB:44:1:073CrossrefGoogle Scholar

  • [34] C.R. Kahna and S.G. Korenman: Atlas diabetologii klinicznej, Via Medica, Gdańsk, 2002 (in Polish) Google Scholar

  • [35] H.E. Lebovitz and M.A. Banerji: “Treatment of insulin resistance in diabetes mellitus”, Eur. J. Pharmacol., Vol. 490, (2004), pp. 135–146. http://dx.doi.org/10.1016/j.ejphar.2004.02.051CrossrefGoogle Scholar

  • [36] A. Nourparvar, A. Bullota, U. Di Mario and R. Perfetti: “Novel strategies for the pharmacological management of type 2 diabetes”, TRENDS Pharmacol. Sci., Vol. 25, (2004), pp. 86–91. http://dx.doi.org/10.1016/j.tips.2003.12.007CrossrefGoogle Scholar

  • [37] K.H. Thompson and C. Orvig: “Vanadium compounds in the treatment of diabetes”, Met. Ions. Biol. Syst., Vol. 41, (2004), pp. 221–225. Google Scholar

  • [38] H. Sakurai: “Therapeutic potential of vanadium in treating diabetes mellitus”, Clin. Calcium., Vol. 15, (2005), pp. 49–57. Google Scholar

  • [39] M.C. Cam, B. Rodriguez and J.H. McNeill: “Distinct glucose lowering and beta cell protective effects of vanadium and food restriction in streptozotocin-diabetes”, Eur. J. Endocrinol., Vol. 141, (1999), pp. 546–554. http://dx.doi.org/10.1530/eje.0.1410546CrossrefGoogle Scholar

  • [40] S. Bolkent, S. Bolkent, R. Yanardag and S. Tunali: “Protective effect of vanadyl sulfate on the pancreas of streptozotocin-induced diabetic rats”, Diabetes Res. Clin. Pract., Vol. 70, (2005), pp. 103–109. http://dx.doi.org/10.1016/j.diabres.2005.02.003CrossrefGoogle Scholar

  • [41] C.E. Heyliger, A.G. Tahiliani and J.H. McNeill: “Effect of vanadate on elevate blood glucose and decreased cardiac performance of diabetic rats”, Science, Vol. 227, (1985), pp. 1474–1477. Google Scholar

  • [42] J.L. Domingo: “Vanadium and tungsten derivatives as antidiabetic agents”, Biol. Trace Elem. Res., Vol. 88, (2002), pp. 97–112. http://dx.doi.org/10.1385/BTER:88:2:097CrossrefGoogle Scholar

  • [43] G. Boden, X. Chen, G.D. Ruiz, J. Van Rossum and S. Turco: “Effects of vanadyl sulphate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus”, Metabolism, Vol. 45, (1996), pp. 1130–1035. http://dx.doi.org/10.1016/S0026-0495(96)90013-XCrossrefGoogle Scholar

  • [44] K. Cusi, S. Cukier, R.A. DeFronzo, M. Torres, F.M. Puchulu and J.C. Pereira: “Vanadyl sulphate improves hepatic and muscle insulin sensitivity in type 2 diabetes”, Clin. Endocrinol. Metab., Vol. 86, (2001), pp. 1410–1417. http://dx.doi.org/10.1210/jc.86.3.1410CrossrefGoogle Scholar

  • [45] J. Gatjens, B. Meier, T. Kiss, E.M. Nagy, P. Buglyo, H. Sakurai, K. Kawabe and D. Rehder: “A new family of insulin-mimetic vanadium complexes derived from 5-carboalkoxypicolinates”, Chem. Eur. J., Vol. 9, (2003), pp. 4924–4935. http://dx.doi.org/10.1002/chem.200305019CrossrefGoogle Scholar

  • [46] H. Sakurai, T. Inohara, Y. Adachi, K. Kawabe, H. Yasui and J. Takada: “A new candidate for insulinomimetic vanadium complexes: synergism oxovanadium(IV) porphyrin and sodium ascorbate”, Bioorg. Med. Chem., Vol. 8, (2004), pp. 1093–1096. CrossrefGoogle Scholar

  • [47] D.C. Crans: “Chemistry and insulin-like properties of vanadium (IV) and vanadium (V) compounds”, J. Inorg. Biochem., Vol. 80, (2000), pp. 123–131. http://dx.doi.org/10.1016/S0162-0134(00)00048-9CrossrefGoogle Scholar

  • [48] Y. Shechter: “Insulin-mimetic effects of vanadate”, Diabetes, Vol. 39, (1990), pp. 1–6. CrossrefGoogle Scholar

  • [49] J. Rosa and J. Rosa: “Insulin-like and non-insulin-like action of vanadate in hepatocytes cultured in vitro”, Coll. Anthropo., Vol. 28, (2004), pp. 309–315. Google Scholar

  • [50] Y. Wang, J. Han, Y. Zang and W. Guo: “Effects of vanadate on leptin production from isolated rat adipocytes”, Biol. Trace Elem. Res., Vol. 85, (2002), pp. 171–182. http://dx.doi.org/10.1385/BTER:85:2:171CrossrefGoogle Scholar

  • [51] M.L. Battell, V.G. Yuen and J.H. McNeill: “Treatment of BB rats with vanadyl sulphate”, Pharmacol. Commun., Vol. 1, (1992), pp. 291–301. Google Scholar

  • [52] S. Ramanadham, G.H. Cros, J.J. Mongold, J.J. Serrano and J.H. McNeill: “Enhanced in vivo sensitivity of vanadyl treated diabetic rats to insulin”, Can. J. Physiol. Pharmacol., Vol. 68, (1990), pp. 486–491. CrossrefGoogle Scholar

  • [53] M.C. Cam, R.W. Brownsey and J.H. McNeill: “Mechanism of vanadium action: insulin-mimetic or insulin-enhancing ageng?”, Can. J. Physiol., Vol. 78, (2000), pp. 829–847. http://dx.doi.org/10.1139/cjpp-78-10-829CrossrefGoogle Scholar

  • [54] A.K. Srivastova, J.L. Chiasson and S.K. Pandey: “Mechanism of insulin-like action of vanadium compounds”, Metal Ion in Biol. Med., Vol. 4, (1996), pp. 328–330. Google Scholar

  • [55] G. Fantus, R. Georg, S. Tang, P. Chong and M.J. Poznansky: “Insulin-mimetic agent vanadate promotes receptor endocytosis and inhibits intracellular ligand-receptor degradation by a mechanism distinct from the lysosomotropic agents”, Diabetes, Vol. 45, (1996), pp. 1084–1092. CrossrefGoogle Scholar

  • [56] I. Goldwaser, D. Gefel, E. Gershonov, M. Fridkin and Y. Shechter: “Insulin-like effects of vanadium: basic and clinical implication”, J. Inorg. Biochem., Vol. 80, (2000), pp. 21–25. http://dx.doi.org/10.1016/S0162-0134(00)00035-0CrossrefGoogle Scholar

  • [57] Y. Shechter, I. Goldwaser, M. Mironchik, M. Fridkin and D. Gefel: “Historic perspective and recent developments on the insulin-like action of vanadium; toward developing vanadium-based drugs for diabetes”, Coordin. Chem. Rev., Vol. 237, (2003), pp. 3–11. http://dx.doi.org/10.1016/S0010-8545(02)00302-8CrossrefGoogle Scholar

  • [58] G. Elberg, Z. He, J. Li, N. Sekar and Y. Shechter: “Vanadate activates membranous nonreceptor protein tyrosine kinase in rat adipocytes”, Diabetes, Vol. 46, (1997), pp. 1684–1690. CrossrefGoogle Scholar

  • [59] P. Poucheret, S. Verma, M.D. Grynpas and J.H. McNeill: “Vanadium and diabetes”, Mol. Cell. Biochem., Vol. 188, (1998), pp. 73–80. http://dx.doi.org/10.1023/A:1006820522587CrossrefGoogle Scholar

  • [60] A.M. Morgan and O.S. El-Tawil: “Effects of ammonium metavanadate on fertility and reproductive performance of adult male and female rats”, Pharmacol. Res., Vol. 47, (2003), pp. 75–85. http://dx.doi.org/10.1016/S1043-6618(02)00241-4CrossrefGoogle Scholar

  • [61] L. Wang, D. Medan, R. Mercer, D. Overmiller, S.S. Leornard, V. Castranova, X. Shi, M. Ding, C. Huang and Y. Rojanasakul: “Vanadium-induced apoptosis and pulmonary inflammation in mice. Role of reactive oxygen species”, J. Cell. Physiol., Vol. 195, (2003), pp. 99–107. http://dx.doi.org/10.1002/jcp.10232CrossrefGoogle Scholar

  • [62] J.L. Domingo, M. Gomez, D.J. Sanchez, J.M. Llobet and C.L. Keen: “Toxicology of vanadium compounds in diabetic rats: The action of chelating agents on vanadium accumulation”, Mol. Cell. Biochem., Vol. 153, (1995), pp. 233–240. http://dx.doi.org/10.1007/BF01075942CrossrefGoogle Scholar

  • [63] M.C. Cam, R.A. Pederson, R.W. Brownsey and J.H. McNeill: “Long-term effectiveness of vanadyl sulphate in streptozotocin-diabetic rats”, Diabetologia, Vol. 36, (1993), pp. 218–224. http://dx.doi.org/10.1007/BF00399953CrossrefGoogle Scholar

  • [64] S. Dai and J.H. McNeill: “One-year treatment of non-diabetic and sterptozotocin-diabetic rats with vanadyl sulphate did not alter blood pressure or hematological indices”, Pharmacol. Toxicol., Vol. 74, (1994), pp. 110–115. CrossrefGoogle Scholar

  • [65] J. Somerville and B. Davies: “Effect of vanadium on serum cholesterol”, Am. Heart J., Vol. 64, (1962), pp. 54–56. http://dx.doi.org/10.1016/0002-8703(62)90091-1CrossrefGoogle Scholar

  • [66] J.P. Fawcett, S.J. Farquhar, T. Thou and B.I. Shand: “Oral vanadyl sulphate does not affect blood cells, viscosity or biochemistry in humans”, Pharmacol. Toxicol., Vol. 80, (1997), pp. 202–206. http://dx.doi.org/10.1111/j.1600-0773.1997.tb00397.xCrossrefGoogle Scholar

  • [67] D.J. Sanchez, M.T. Colomina, J.L. Domingo and J. Corbella: “Prevention by sodium 4,5-dihydroxybenzene-1,3-disulfonat (tiron) of vanadate-induced behavioral toxicity in rats”, Biol. Trace Elem. Res., Vol. 69, (1999), pp. 249–258. Google Scholar

  • [68] K.H. Thompson, Y. Tsukada, Z. Xu, M.L. Batell, J.H. McNeill and C. Orvig: “Influence of chelation and oxidation state of vanadium bioavailability and their effects on tissue concentration of zing, copper and iron”, Biol. Trace Elem. Res., Vol. 96, (2002), pp. 31–44. http://dx.doi.org/10.1385/BTER:86:1:31CrossrefGoogle Scholar

  • [69] T. Storr, D. Mitchell, P. Buglyo, K.H. Thompson, V.G. Yuen, J.H. McNeill and C. Orvig: “Vanadyl-tizolidinedione combination agents for diabetes therapy”, Bioconjugate Chem., Vol. 14, (2003), pp. 212–221. http://dx.doi.org/10.1021/bc025606mCrossrefGoogle Scholar

  • [70] A.J. Thompson, R.M. Strieter, I. Lindley, K.D. Bellman, I.A. Setyawati, B.O. Patrick, V. Karunaratne, G. Rawji, J. Weeler, K. Sutton, C. Cassidy, J.H. McNeill, V.G. Yuen and C. Orvig: “Preparation and characterization of vanadyl complexes with bidenate maltol-type ligands; in vivo comparisons of anti-diabetic therapeutic potential”, J. Biol. Inorg. Chem., Vol. 8, (2003), pp. 66–74. http://dx.doi.org/10.1007/s00775-002-0388-5CrossrefGoogle Scholar

  • [71] T. Chakraborty, S. Ghosh, S. Datt, P. Chakraborty and M. Chatterjee: “Vanadium suppress sister-chromatid exchange and DNA-protein cross-link formation and restores antioxidant status hepatocellular architecture during 2-acetylaminfluorene-induced experimental rat hepatocarcinogenesis”, J. Exp. Ther. Oncol., Vol. 3, (2003), pp. 346–362. http://dx.doi.org/10.1111/j.1533-869X.2003.01107.xGoogle Scholar

  • [72] C. Djordjevic and G.L. Wampler: “Antitumor activity and toxicity of peroxo heteroligand vanadates(V) in relation to biochemistry of vanadium”, J. Inorg. Biochem., Vol. 25, (1985), pp. 51–55. http://dx.doi.org/10.1016/0162-0134(85)83007-5CrossrefGoogle Scholar

  • [73] C.A. Afshari, S. Kodama, H.M. Bivis, T.B. Willard, H. Fujiki and J.C. Barrett: “Induction of neoplastic progression in Syriam hamster embryo cell treated with protein phosphatase inhibitors”, Cancer Res., Vol. 53, (1993), pp. 1777–1782. Google Scholar

  • [74] N.B. Ress, B.J. Chou, R.A. Renne, J.A. Dill, R.A. Miller, J.H. Roycroft, J.R. Hailey, J.K. Haseman and J.R. Bucher: “Carcinogenecity of inhaled vanadium pentoxide in F344/N rats and B6C3F1 mice”, Toxicol. Sci., Vol. 74, (2003), pp. 287–96. http://dx.doi.org/10.1093/toxsci/kfg136CrossrefGoogle Scholar

  • [75] D.G. Barceloux: “Vanadium”, Clin. Toxicol., Vol. 37, (1999), pp. 265–278. http://dx.doi.org/10.1081/CLT-100102425CrossrefGoogle Scholar

  • [76] O.J. D’Cruz and F.M. Uckun: “Metvan: a novel oxovanadium(IV) complex with broad spectrum activity”, Expert. Opin. Investig. Drugs, Vol. 11, (2002), pp. 1829–1836. http://dx.doi.org/10.1517/13543784.11.12.1829CrossrefGoogle Scholar

  • [77] P. Ghosh, O.J. D’Cruz, R.K. Narla and F.M. Uckun: “Apoptosis-inducing vanadocene compounds against human testicular cancer”, Clin. Cancer Res., Vol. 6, (2000), pp. 1536–1545. Google Scholar

  • [78] X. Shi, L.G. Hudson and K.J. Liu: “Oxidative stress and apoptosis in metal ion-induced carcinogenesis”, Free Radical Biol. Med., Vol. 37, (2004), pp. 582–593. http://dx.doi.org/10.1016/j.freeradbiomed.2004.03.012CrossrefGoogle Scholar

  • [79] M. Valko, C.J. Rhodes, J. Moncol, M. Izakovic and M. Mazur: “Free radicals, metals and antioxidants in oxidative stress-induced cancer”, Chem. Biol. Interact., Vol. 160, (2006), pp. 1–40. http://dx.doi.org/10.1016/j.cbi.2005.12.009CrossrefGoogle Scholar

  • [80] Y. Zhang, X.D. Yang, K. Wang and D.C. Crans: “The permeability and cytotoxicity of insulin-mimetic vanadium (III,IV,V)-dipicolinate complexes”, J. Inorg. Biochem., Vol. 100, (2006), pp. 80–87. http://dx.doi.org/10.1016/j.jinorgbio.2005.10.006CrossrefGoogle Scholar

  • [81] L.S. Capella, M.R. Gefe, E.F. Silva, O. Affonso-Mitidieri, A.G. Lopes, V.M. Rumjanek and M.A.M. Capella: “Mechanism of vanadate-induced cellular toxicity: role of cellular gluthatione and NADPH”, Arch. Biochem. Biophys., Vol. 406, (2002), pp. 65–72. http://dx.doi.org/10.1016/S0003-9861(02)00408-3CrossrefGoogle Scholar

  • [82] Y.Z. Wang, J. Ingram, D.M. Walters, A.B. Rice, J.H. Santos, B. van Houten and J.C. Bonner: “Vanadium-induced STAT-1 activation in lung myofibroblasts requires H2O2 and P38 MAP kinase”, Free Radical Biol. Med., Vol. 35, (2003), pp. 845–855. http://dx.doi.org/10.1016/S0891-5849(03)00399-XGoogle Scholar

  • [83] B. Desoize: “Metals and metal compounds in cancer treatment”, Anticancer Res., Vol. 24, (2004), pp. 1529–1544. Google Scholar

  • [84] R.M.C. Gandara, S.S. Soares, H. Martins, C. Gutierez-Merino and M. Aureliano: “Vanadate oligomers: In vivo effects in hepatic vanadium accumulation and stress markers”, J. Inorg. Biochem., Vol. 99, (2005), pp. 1238–1244. http://dx.doi.org/10.1016/j.jinorgbio.2005.02.023CrossrefGoogle Scholar

  • [85] S. Ivancsits, A. Pilger, E. Diem, A. Schaffer and H.W. Rudiger: “Vanadate induces DNA strand breaks in cultured human fibroblast at doses relevant to occupational exposure”, Mutat. Res., Vol. 519, (2002), pp. 25–35. Google Scholar

  • [86] J.J. Rodriguez-Mercado, E. Roldan-Reyes and M. Altamirano-Lozano: “Genotoxic effects of vanadium(IV) in human peripheral blood cells”, Toxicol. Lett., Vol. 144, (2003), pp. 359–369. http://dx.doi.org/10.1016/S0378-4274(03)00255-8CrossrefGoogle Scholar

  • [87] M.A. Aragon, M.E. Ayala, T.I. Fortoul, P. Bizzaro and M. Altamirano-Lozano: “Vanadium induced ultrastructural changes and apoptosis in male germ cells”, Reprod. Toxicol., Vol. 20, (2005), pp. 127–134. http://dx.doi.org/10.1016/j.reprotox.2004.11.016CrossrefGoogle Scholar

  • [88] D.A. Barrio, A.M. Williams, A.M. Cortizo and S.B. Etcheverry: “Synthesis of new vanadyl(IV) complex with trehalose (TreVO) insulin-mimetic activities in osteoblast-like cells in culture”, J. Biol. Inorg. Chem., Vol. 8, (2003), pp. 459–468. Google Scholar

  • [89] M.S. Molinuevo, D.A. Barrio, A.M. Cortzo and S.B. Etcheverry: “Antitumoral properties of two vanadyl(IV) complexes in osteoblast in culture: role of apoptosis and oxidative stress”, Cancer Chem. Pharmacol., Vol. 53, (2004), pp. 163–172. http://dx.doi.org/10.1007/s00280-003-0708-7CrossrefGoogle Scholar

  • [90] G. Daum, B. Levkau, N.L. Chamberlain, Y. Wang and A.W. Clowes: “The mitogen-activated protein kinase pathway contributes to vanadate toxicity in vascular smooth muscle cells”, Mol. Cell. Biochem., Vol. 183, (1998), pp. 97–103. http://dx.doi.org/10.1023/A:1006820214072CrossrefGoogle Scholar

  • [91] H. Uzui, J.D. Lee, H. Shimizu, H. Tsutani and T. Ueda: “The role of protein-tyrosine phosphorylation and gelatinase production in migration and proliferation of smooth muscle cells”, Artherosclerosis, Vol. 149, (2000), pp. 51–59. http://dx.doi.org/10.1016/S0021-9150(99)00295-6CrossrefGoogle Scholar

  • [92] A.M. Cortizo, V.C. Salice, C.M. Vescina and S.B. Etcheverry: “Proliferative and morphological changes induced by vanadium compounds on Swiss 3T3 fibroblast”, BioMetals, Vol. 10, (1997), pp. 127–133. http://dx.doi.org/10.1023/A:1018335324447Google Scholar

  • [93] K. Woźniak and J. Błasiak: “Vanadyl sulphate can differentially damage DNA in human lymphocytes and HeLa cells”, Arch. Toxicol., Vol. 78, (2004), pp. 7–15. http://dx.doi.org/10.1007/s00204-003-0506-3CrossrefGoogle Scholar

About the article

Published Online: 2006-09-01

Published in Print: 2006-09-01

Citation Information: Open Life Sciences, Volume 1, Issue 3, Pages 314–332, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-006-0029-z.

Export Citation

© 2006 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Samukelisiwe Sibiya, Bonisiwe Msibi, Andile Khathi, Ntethelelo Sibiya, Irvin Booysen, and Phikelelani Ngubane
Canadian Journal of Physiology and Pharmacology, 2019, Page 1
Muhammad Imtiaz, Muhammad Shahid Rizwan, Shuanglian Xiong, Hailan Li, Muhammad Ashraf, Sher Muhammad Shahzad, Muhammad Shahzad, Muhammad Rizwan, and Shuxin Tu
Environment International, 2015, Volume 80, Page 79
Franz Kerek and Victor A. Voicu
Frontiers in Endocrinology, 2015, Volume 5
Alex Evangelista do Amaral, Carmen Lúcia Oliveira Petkowicz, Ana Lucia Ramalho Mercê, Marcelo Iacomini, Glaucia Regina Martinez, Maria Eliane Merlin Rocha, Silvia Maria Suter Correia Cadena, and Guilhermina Rodrigues Noleto
European Journal of Medicinal Chemistry, 2015, Volume 90, Page 732
Tengxiu Tu, Shunxing Li, Lihui Chen, Fengying Zheng, and Xu-Guang Huang
Aquatic Toxicology, 2014, Volume 155, Page 269
Miguel Navarro-Alarcon, Francisco J. Ruiz-Ojeda, Rosa M. Blanca-Herrera, Abdullah Kaki, Abdu Adem, and Ahmad Agil
Food & Function, 2014, Volume 5, Number 3, Page 512
A. Corapi, L. Gallo, V. Nicolardi, L. Lucadamo, and S. Loppi
Environmental Monitoring and Assessment, 2014, Volume 186, Number 5, Page 3149
Izabela Ono Adriazola, Alex Evangelista do Amaral, Juliana Carolina Amorim, Beatriz Lourenço Correia, Carmen Lúcia Oliveira Petkowicz, Ana Lucia Ramalho Mercê, and Guilhermina Rodrigues Noleto
Journal of Inorganic Biochemistry, 2014, Volume 132, Page 45
Agnieszka Ścibior, Dorota Gołębiowska, and Irmina Niedźwiecka
Oxidative Medicine and Cellular Longevity, 2013, Volume 2013, Page 1
Gil Fraqueza, C. André Ohlin, William H. Casey, and Manuel Aureliano
Journal of Inorganic Biochemistry, 2012, Volume 107, Number 1, Page 82
Souvik Roy, Anil Kumar Mondru, Sudheer Kumar Dontamalla, Ram Prasad Vaddepalli, Santanu Sannigrahi, and Prabhakar Reddy Veerareddy
Biological Trace Element Research, 2011, Volume 144, Number 1-3, Page 1095
Alicia Pérez-Llamazares, Cristóbal J. Galbán-Malagón, Jesús R. Aboal, J. Ángel Fernández, and Alejo Carballeira
Ecotoxicology and Environmental Safety, 2010, Volume 73, Number 4, Page 507
Adriana González-Villalva, Gabriela Piñón-Zárate, Aurora De la Peña Díaz, Mirthala Flores-García, Patricia Bizarro-Nevares, Erika P. Rendón-Huerta, Laura Colín-Barenque, and Teresa Imelda Fortoul
Environmental Toxicology and Pharmacology, 2011, Volume 32, Number 3, Page 447
Agnieszka Ścibior and Halina Zaporowska
Environmental Toxicology and Pharmacology, 2010, Volume 30, Number 2, Page 153
Fiona H. Fry, Brenda Dougan, Nichola McCann, Anthony C. Willis, Christopher J. Ziegler, and Nicola E. Brasch
Inorganica Chimica Acta, 2008, Volume 361, Number 8, Page 2321
Silvia Berto, Pier Giuseppe Daniele, Enrico Prenesti, and Enzo Laurenti
Inorganica Chimica Acta, 2010, Volume 363, Number 13, Page 3469
Deli Wang and Sergio A. Sañudo Wilhelmy
Marine Chemistry, 2009, Volume 117, Number 1-4, Page 52
Shaonly Samanta, Mary Chatterjee, Balaram Ghosh, M. Rajkumar, Ajay Rana, and Malay Chatterjee
Biochimica et Biophysica Acta (BBA) - General Subjects, 2008, Volume 1780, Number 10, Page 1106
Christopher L. Rowe, Andrew Heyes, and William Hopkins
Aquatic Toxicology, 2009, Volume 91, Number 2, Page 179
Amar K. Chandra, Rituparna Ghosh, Aparajita Chatterjee, and Mahitosh Sarkar
Journal of Inorganic Biochemistry, 2007, Volume 101, Number 6, Page 944
Guilhermina Rodrigues Noleto, Carmen Lucia O. Petkowicz, Ana Lucia Ramalho Mercê, Miguel Daniel Noseda, Stelia Carolina Méndez-Sánchez, Fany Reicher, and Maria Benigna M. Oliveira
Journal of Inorganic Biochemistry, 2009, Volume 103, Number 5, Page 749
Zhonglan Gao, Chengyue Zhang, Siwang Yu, Xiaoda Yang, and Kui Wang
JBIC Journal of Biological Inorganic Chemistry, 2011, Volume 16, Number 5, Page 789
Qin Wang, Tong-Tong Liu, Ying Fu, Kui Wang, and Xiao-Gai Yang
JBIC Journal of Biological Inorganic Chemistry, 2010, Volume 15, Number 7, Page 1087
Sabri Cevik, Bihter Şaşmaz, Cengiz Yenikaya, Ferdağ Çolak, Musa Sari, and Orhan Büyükgüngör
Russian Journal of Inorganic Chemistry, 2010, Volume 55, Number 4, Page 494
Yanguo Teng, Xudong Jiao, Jinsheng Wang, Wei Xu, and Jie Yang
Chinese Journal of Geochemistry, 2009, Volume 28, Number 1, Page 105
Ying Fu, Qin Wang, Xiao-Gai Yang, Xiao-Da Yang, and Kui Wang
JBIC Journal of Biological Inorganic Chemistry, 2008, Volume 13, Number 6, Page 1001
Amar K. Chandra, Rituparna Ghosh, Aparajita Chatterjee, and Mahitosh Sarkar
Molecular and Cellular Biochemistry, 2007, Volume 306, Number 1-2, Page 189

Comments (0)

Please log in or register to comment.
Log in