Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 1, Issue 3

Issues

Volume 10 (2015)

Effect of Alpinia galanga extract on cartilage degradation and on gene expression in human chondrocyte and synovial fibroblast metabolism

Peraphan Pothacharoen
  • Thailand Excellence Center for Tissue Engineering, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kanyamas Choocheep
  • Thailand Excellence Center for Tissue Engineering, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tanyaluck Pitak
  • Thailand Excellence Center for Tissue Engineering, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wilart Pompimon / Bhusana Premanode / Timothy Hardingham / Prachya Kongtawelert
  • Thailand Excellence Center for Tissue Engineering, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-09-01 | DOI: https://doi.org/10.2478/s11535-006-0030-6

Abstract

We investigated the effects of A. galanga extract on metabolism and gene expression involved in the interleukin-1β (IL-1β) response of human chondrocyte and synovial fibroblast. A. galanga extract inhibited IL-1β enhanced matrix breakdown of the cartilage explants in a dose-dependent manner. It suppressed uronic acid loss from the tissue and decreased the release of sulfated GAG and hyaluronan into the medium. MMP-2 and MMP-9 activity in the culture medium of chondrosarcomas and synovial fibroblasts were significantly reduced in the presence of A. galanga extract, which also suppressed the production of MMP-1,-3 and-13. The A. galanga extract also significantly increased type II collagen, SOX9 and aggrecan gene expression, suggesting an ability to enhance anabolic activity. At a high dose of A. galanga extract there was a down-regulation of aggrecan gene expression. Comparison with Diacerein® showed its general anti-inflammatory potential to be similar. The A. galanga extract was shown to inhibit IL-1β-stimulated cartilage matrix degradation in both systems. Additionally, the extract showed the potential to up-regulate certain chondrocyte anabolic genes. It may, therefore, offer some cartilage protective and anti-inflammatory properties as a therapeutic agent in arthritis.

Keywords: Alpinia galanga; chondrocyte; synovial fibroblast; gene expression; cartilage degradation

  • [1] P.M. van der Kraan and W.B. van den Berg: “Anabolic and destructive mediators in osteoarthritis”, Curr. Opin. Clin. Nutr. Metab. Care., Vol. 3, (2000), pp. 205–211. http://dx.doi.org/10.1097/00075197-200005000-00007CrossrefGoogle Scholar

  • [2] F.J. Blanco, Y. Geng and M. Lotz: “Differentiation-dependent effects of IL-1 and TGF-beta on human articular chondrocyte proliferation are related to inducible nitric oxide synthase expression”, J. Immunol., Vol. 154, (1995), pp. 4018–4026. Google Scholar

  • [3] A.R. Shikhman, K. Kuhn, N. Alaaeddine and M. Lotz: “N-acetylglucosamine prevents IL-1 beta-mediated activation of human chondrocytes”, J. Immunol., Vol. 166, (2001), pp. 5155–5160. Google Scholar

  • [4] A.M. Badger, M.N. Cook, B.A. Swift, T.M. Newman-Tarr, M. Gowen and M. Lark: “Inhibition of interleukin-1-induced proteoglycan degradation and nitric oxide production in bovine articular cartilage/chondrocyte cultures by the natural product, hymenialdisine”, J. Pharmacol. Exp. Ther., Vol. 290, (1999), pp. 587–593. Google Scholar

  • [5] M.P. Vincenti, I.M. Clark and C.E. Brinckerhoff: “Using inhibitors of metalloproteinases to treat arthritis. Easier said than done?”, Arthritis Rheum., Vol. 37, (1994), pp. 1115–1126. CrossrefGoogle Scholar

  • [6] P.G. Mitchell, H.A. Magna, L.M. Reeves, L.L. Lopresti-Morrow, S.A. Yocum, P.J. Rosner, K.F. Geoghegan and J.E. Hambor: “Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage”, J. Clin. Invest., Vol. 97, (1996), pp. 761–768. Google Scholar

  • [7] P. Reboul, J.P. Pelletier, G. Tardif, J.M. Cloutier and J. Martel-Pelletier: “The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis”, J. Clin. Invest., Vol. 97, (1996), pp. 2011–2019. CrossrefGoogle Scholar

  • [8] Y. Okada, M. Shinmei, O. Tanaka, K. Naka, A. Kimura, I. Nakanishi, M.T. Bayliss, K. Iwata and H. Nagase: “Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium”, Lab. Invest., Vol. 66, (1992), pp. 680–690. Google Scholar

  • [9] G. Murphy, M.I. Cockett, P.E. Stephens, B.J. Smith and A.J. Docherty: “Stromelysin is an activator of procollagenase”, A study with natural and recombinant enzymes”, Biochem. J., Vol. 248, (1987), pp. 265–268. Google Scholar

  • [10] R.M. Hembry, M.R. Bagga, J.J. Reynolds and D.L. Hamblen: “Immunolocalisation studies on six matrix metalloproteinases and their inhibitors, TIMP-1 and TIMP-2, in synovia from patients with osteo-and rheumatoid arthritis”, Ann. Rheum. Dis., Vol. 54, (1995), pp. 25–32. CrossrefGoogle Scholar

  • [11] F. Ollivierre, U. Gubler, C.A. Towle, C. Laurencin and B.V. Treadwell: “Expression of IL-1 genes in human and bovine chondrocytes: a mechanism for autocrine control of cartilage matrix degradation”, Biochem. Biophy.s Res. Commun., Vol. 141, (1986), pp. 904–911. http://dx.doi.org/10.1016/S0006-291X(86)80128-0Google Scholar

  • [12] W.P. Arend and J.M. Dayer: “Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis”, Arthritis. Rheum., Vol. 33, (1990), pp. 305–315. Google Scholar

  • [13] M. Shinmei, K. Masuda, T. Kikuchi and Y. Shimomura: “The role of cytokines in chondrocyte mediated cartilage degradation”, J. Rheumatol. Suppl., Vol. 18, (1989), pp. 32–34. Google Scholar

  • [14] J.P. Pelletier, R. McCollum, J.M. Cloutier and J. Martel-Pelletier: “Synthesis of metalloproteases and interleukin 6 (IL-6) in human osteoarthritic synovial membrane is an IL-1 mediated process”, J. Rheumatol. Suppl., Vol. 43, (1995), pp. 109–114. Google Scholar

  • [15] H. Muir: “The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules”, Bioessays., Vol. 17, (1995), pp. 1039–1048. http://dx.doi.org/10.1002/bies.950171208CrossrefGoogle Scholar

  • [16] J.P. Urban: “The chondrocyte: a cell under pressure”, Br. J. Rheumatol. Vol. 33, (1994), pp. 901–908. CrossrefGoogle Scholar

  • [17] D. Eyre: “Collagen of articular cartilage”, Arthritis. Res., Vol. 4, (2002), pp. 30–35. http://dx.doi.org/10.1186/ar380CrossrefGoogle Scholar

  • [18] G. Rizkalla, A. Reiner, E. Bogoch and A.R. Poole: “Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease”, J. Clin. Invest., Vol. 90, (1992), pp. 2268–2277. http://dx.doi.org/10.1172/JCI116113CrossrefGoogle Scholar

  • [19] J.R. Matyas, M.E. Adams, D. Huang and L.J. Sandell: “Discoordinate gene expression of aggrecan and type II collagen in experimental osteoarthritis”, Arthritis. Rheum., Vol. 38, (1995), pp. 420–425. Google Scholar

  • [20] C.B. de Crombrugghe, V. Lefebvre and K. Nakashima: “Regulatory mechanisms in the pathways of cartilage and bone formation”, Curr. Opin. Cell. Biol., Vol. 13, (2001), pp. 721–727. http://dx.doi.org/10.1016/S0955-0674(00)00276-3CrossrefGoogle Scholar

  • [21] Y. Li, S.R. Tew, A.M. Russell, K.R. Gonzalez, T.E. Hardingham and R.E. Hawkins: “Transduction of passaged human articular chondrocytes with adenoviral, retroviral, and lentiviral vectors and the effects of enhanced expression of SOX9”, Tissue. Eng. Vol. 10, (2004), pp. 575–584. http://dx.doi.org/10.1089/107632704323061933CrossrefGoogle Scholar

  • [22] H. Matsuda, Y. Pongpiriyadacha, T. Morikawa, M. Ochi and M. Yoshikawa: “Gastroprotective effects of phenylpropanoids from the rhizomes of Alpinia galanga in rats: structural requirements and mode of action”, Eur. J. Pharmacol. Vol. 471, (2003), pp. 59–67. http://dx.doi.org/10.1016/S0014-2999(03)01785-0CrossrefGoogle Scholar

  • [23] H. Matsuda, T. Morikawa, H. Managi and M. Yoshikawa: “Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-alpha and IL-4 in RBL-2H3 cells”, Bioorg. Med. Chem. Lett., Vol. 13, (2003), pp. 3197–3202. http://dx.doi.org/10.1016/S0960-894X(03)00710-8CrossrefGoogle Scholar

  • [24] R. Grzanna, L. Lindmark and C.G. Frondoza: “Ginger-an herbal medicinal product with broad anti-inflammatory actions”, J. Med. Food., Vol. 8, (2005), pp. 125–132. http://dx.doi.org/10.1089/jmf.2005.8.125CrossrefGoogle Scholar

  • [25] T. Morikawa, S. Ando, H. Matsuda, S. Kataoka, O. Muraoka and M. Yoshikawa: “Inhibitors of nitric oxide production from the rhizomes of Alpinia galanga: structures of new 8-9′ linked neolignans and sesquineolignan”, Chem. Pharm. Bull. (Tokyo). Vol. 53, (2005), pp. 625–630. http://dx.doi.org/10.1248/cpb.53.625CrossrefGoogle Scholar

  • [26] T. Decker and M.L. Lohmann-Matthes: “A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity”, J. Immunol. Methods. Vol. 115, (1988), pp. 61–69. http://dx.doi.org/10.1016/0022-1759(88)90310-9CrossrefGoogle Scholar

  • [27] R.W. Farndale, D.J. Buttle and A.J. Barrett: “Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue”, Biochim. Biophys. Acta., Vol. 883, (1986), pp. 173–177. Google Scholar

  • [28] N. Blumenkrantz and G. sboe-Hansen: “New method for quantitative determination of uronic acids”, Anal. Biochem., Vol. 54, (1973), pp. 484–489. http://dx.doi.org/10.1016/0003-2697(73)90377-1CrossrefGoogle Scholar

  • [29] P. Kongtawelert and P. Ghosh: “A method for the quantitation of hyaluronan (hyaluronic acid) in biological fluids using a labeled avidin-biotin technique”, Anal. Biochem., Vol. 185, (1990), pp. 313–318. http://dx.doi.org/10.1016/0003-2697(90)90300-XCrossrefGoogle Scholar

  • [30] L. Marchuk, P. Sciore, C. Reno, C.B. Frank and D.A. Hart: “Postmortem stability of total RNA isolated from rabbit ligament, tendon and cartilage”, Biochim. Biophys. Acta, Vol. 1379, (1998), pp. 171–177. Google Scholar

  • [31] R. Boykiw, P. Sciore, C. Reno, L. Marchuk, C.B. Frank and D.A. Hart: “Altered levels of extracellular matrix molecule mRNA in healing rabbit ligaments”, Matrix Biol., Vol. 17, (1998), pp. 371–378. http://dx.doi.org/10.1016/S0945-053X(98)90089-0CrossrefGoogle Scholar

  • [32] A. Ito, T. Nose, S. Takahashi and Y. Mori: “Cyclooxygenase inhibitors augment the production of pro-matrix metalloproteinase 9 (progelatinase B) in rabbit articular chondrocytes”, FEBS Lett., Vol. 360, (1995), pp. 75–79. http://dx.doi.org/10.1016/0014-5793(95)00085-NCrossrefGoogle Scholar

  • [33] D.D. Taub and J.J. Oppenheim: “Chemokines, inflammation and the immune system”, Ther. Immunol., Vol. 1, (1994), pp. 229–246. Google Scholar

  • [34] J.A. Mengshol, M.P. Vincenti, C.I. Coon, A. Barchowsky and C.E. Brinckerhoff: “Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3”, Arthritis. Rheum., Vol. 43, (2000), pp. 801–811. http://dx.doi.org/10.1002/1529-0131(200004)43:4<801::AID-ANR10>3.0.CO;2-4CrossrefGoogle Scholar

  • [35] M. Lingetti, P.L. D’ambrosio, F. Grezia, P. Sorentino and E. Lingetti: “A controlled study in the treatment of osteoarthritis with diacerein (Artrodar)”, Curr. Therp. Res., Vol. 31, (1982), pp. 408–412. Google Scholar

  • [36] R. Marcolonge, A. Fioravanti, S. Adami, E. Tozzi, M. Mian and A. Zampieri: “Efficacy and tolerability of diacerein in the treatment of osteoarthrosis”, Curr. Therp. Res., Vol. 37, (1988), pp. 529–536. Google Scholar

  • [37] M. Nguyen, M. Dougados, L. Berdah and B. Amor: “Diacerhein in the treatment of osteoarthritis of the hip”, Arthritis. Rheum., Vol. 37, (1994), pp. 529–536. Google Scholar

  • [38] B. Mazieres and L. Berda: “Effect of diacerein (ART 50) on an experimental post-contusive model of OA”, Osteoarthritis Cart., Vol. 1, (1993), p. 47. Google Scholar

  • [39] K.D. Brandt, G. Smith, S.Y. Kang, S. Mayer, B. O’Corner and M. Albrecht: “Effects of diacerhein in an accelerated canine model of osteoarthritis”, Osteoarthritis Cart., Vol. 5, (1997), pp. 438–439. http://dx.doi.org/10.1016/S1063-4584(97)80048-9CrossrefGoogle Scholar

  • [40] G.N. Smith, Jr., S.L. Myers, K.D. Brandt, E.A. Mickler and M.E. Albrecht: “Diacerhein treatment reduces the severity of osteoarthritis in the canine cruciate-deficiency model of osteoarthritis”, Arthritis Rheum., Vol. 42, (1999), pp. 545–554. http://dx.doi.org/10.1002/1529-0131(199904)42:3<545::AID-ANR20>3.0.CO;2-4CrossrefGoogle Scholar

  • [41] T. Tamura, N. Kosaka, J. Ishiwa, T. Sato, H. Nagase and A. Ito: “Rhein, an active metabolite of diacerein, down-regulates the production of pro-matrix metalloproteinases-1,-3,-9 and-13 and up-regulates the production of tissue inhibitor of metalloproteinase-1 in cultured rabbit articular chondrocytes”, Osteoarthritis. Cartilage., Vol. 9, (2001), pp. 257–263. http://dx.doi.org/10.1053/joca.2000.0383CrossrefGoogle Scholar

About the article

Published Online: 2006-09-01

Published in Print: 2006-09-01


Citation Information: Open Life Sciences, Volume 1, Issue 3, Pages 430–450, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-006-0030-6.

Export Citation

© 2006 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Korakot Nganvongpanit, Patama Chaochird, Puntita Siengdee, Peraphan Pothacharoen, Kasisin Klunklin, Siriwadee Chomdej, Supamit Mekchay, and Prachya Kongtaweelert
Journal of Orthopaedic Surgery and Research, 2009, Volume 4, Number 1
[2]
Saeed Samarghandian, Mousa-Al-Reza Hadjzadeh, Jalil Tavakkol Afshari, and Mohadeseh Hosseini
BMC Complementary and Alternative Medicine, 2014, Volume 14, Number 1
[3]
Qiao-hui Zeng, Chuan-Li Lu, Xue-wu Zhang, and Jian-Guo Jiang
Food Funct., 2015, Volume 6, Number 2, Page 431
[4]
D Kaushik
Journal of Chinese Integrative Medicine, 2011, Volume 9, Number 10, Page 1061
[5]
Thanyaluck Phitak, Kanyamas Choocheep, Peraphan Pothacharoen, Wilart Pompimon, Bhusana Premanode, and Prachya Kongtawelert
Phytochemistry, 2009, Volume 70, Number 2, Page 237
[6]
Peraphan Pothacharoen, Kanyamas Choocheep, Thanyaluck Phitak, Wilart Pompimon, and Prachya Kongtawelert
In Vitro Cellular & Developmental Biology - Animal, 2011, Volume 47, Number 3, Page 183

Comments (0)

Please log in or register to comment.
Log in