Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR 2016 (Open Life Sciences): 0.448

CiteScore 2016: 1.02

SCImago Journal Rank (SJR) 2016: 0.329
Source Normalized Impact per Paper (SNIP) 2016: 0.621

Open Access
See all formats and pricing
More options …
Volume 2, Issue 1 (Mar 2007)


Antimicrobial peptides: an overview of a promising class of therapeutics

Andrea Giuliani / Giovanna Pirri / Silvia Nicoletto
Published Online: 2007-03-01 | DOI: https://doi.org/10.2478/s11535-007-0010-5


Antibiotic resistance is increasing at a rate that far exceeds the pace of new development of drugs. Antimicrobial peptides, both synthetic and from natural sources, have raised interest as pathogens become resistant against conventional antibiotics. Indeed, one of the major strengths of this class of molecules is their ability to kill multidrug-resistant bacteria. Antimicrobial peptides are relatively small (6 to 100 aminoacids), amphipathic molecules of variable length, sequence and structure with activity against a wide range of microorganisms including bacteria, protozoa, yeast, fungi, viruses and even tumor cells. They usually act through relatively non-specific mechanisms resulting in membranolytic activity but they can also stimulate the innate immune response. Several peptides have already entered pre-clinical and clinical trials for the treatment of catheter site infections, cystic fibrosis, acne, wound healing and patients undergoing stem cell transplantation. We review the advantages of these molecules in clinical applications, their disadvantages including their low in vivo stability, high costs of production and the strategies for their discovery and optimization.

Keywords: Antimicrobial peptides (AMPs); mode of action; therapeutic use; proteases stability; dendrimeric peptides

  • [1] M. Zasloff: “Antimicrobial peptides of multicellular organisms”, Nature, Vol. 415, (2002), pp. 389–395. http://dx.doi.org/10.1038/415389aCrossrefGoogle Scholar

  • [2] H.G. Boman: “Peptide antibiotics and their role in innate immunity”, Annu. Rev. Immunol., Vol. 13, (1995), pp. 61–92. http://dx.doi.org/10.1146/annurev.iy.13.040195.000425CrossrefGoogle Scholar

  • [3] M. Wu, E. Maier, R. Benz and R.E.W. Hancock: “Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli”, Biochemistry, Vol. 38, (1999), pp. 7235–7242. http://dx.doi.org/10.1021/bi9826299CrossrefGoogle Scholar

  • [4] R.M. Epand and H.J. Vogel: “Diversity of antimicrobial peptides and their mechanisms of action”, Biochim. Biophys. Acta, Vol. 1462, (1999), pp. 11–28. http://dx.doi.org/10.1016/S0005-2736(99)00198-4CrossrefGoogle Scholar

  • [5] W. van’t Hof, E.C.I. Veerman, E.J. Helmerhorst and A.V.N. Amerongen: “Antimicrobial peptides: properties and applicability”, Biol. Chem., Vol. 382, (2001), pp. 597–619. http://dx.doi.org/10.1515/BC.2001.072CrossrefGoogle Scholar

  • [6] R.E.W. Hancock and R. Lehrer: “Cationic peptides: a new source of antibiotics”, Trends Biotechnol., Vol. 16, (1998), pp. 82–88. http://dx.doi.org/10.1016/S0167-7799(97)01156-6CrossrefGoogle Scholar

  • [7] F.V. Mohammad, M. Noorwala, V.U. Ahmad and B. Sener: “Bidesmosidic triterpenoidal saponins from the roots of Symphytum officinale”, Planta Med., Vol 61, (1995), p. 94. http://dx.doi.org/10.1055/s-2006-958017CrossrefGoogle Scholar

  • [8] S.B. Aley, M. Zimmerman, M. Hetsko, M.E. Selsted and F.D. Gillin: “Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides”, Infect. Immun, Vol. 62, (1994), pp. 5397–5403. Google Scholar

  • [9] M.G. Scott, H. Yan and R.E.W. Hancock: “Biological properties of structurally related α-helical cationic antimicrobial peptides”, Infect. Immun., Vol. 67, (1999), pp. 2005–2009. Google Scholar

  • [10] M.A. Baker, W. L. Maloy, M. Zasloff and L.S. Jacob: “Anticancer efficacy of magainin 2 and analogue peptides”, Cancer Res., Vol. 53, (1993), pp. 3052–3057. Google Scholar

  • [11] R.L. Gallo, M. Ono, T. Povsic, C. Page, E. Eriksson, M. Klagsbrun and M. Bernfield: “Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds”, Proc. Natl. Acad. Sci. U.S.A, Vol. 91, (1994), pp. 11035–11039. http://dx.doi.org/10.1073/pnas.91.23.11035CrossrefGoogle Scholar

  • [12] T. Ganz: “Defensins and host defense”, Science, Vol. 286, (1999), pp. 420–421. http://dx.doi.org/10.1126/science.286.5439.420CrossrefGoogle Scholar

  • [13] V. Dhoplea, A. Krukemeyera and A. Ramamoorthy: “The human beta-defensin-3, an antibacterial peptide with multiple biological functions”, Biochim. Biophys. Acta, (2006), Vol. 1758, pp. 1499–1512. http://dx.doi.org/10.1016/j.bbamem.2006.07.007CrossrefGoogle Scholar

  • [14] D. Yang, A. Biragyn, L.W. Kwak and J.J. Oppenheim: “Mammalian defensins in immunity: more than just microbicidal”, Trends Immun., Vol. 23, (2002), pp. 291–296. http://dx.doi.org/10.1016/S1471-4906(02)02246-9CrossrefGoogle Scholar

  • [15] M.C. Territo, T. Ganz, M. E. Selsted and R. Lehrer: “Monocyte-chemotactic activity of defensins from human neutrophils”, J. Clin. Invest., Vol. 84, (1989), pp. 2017–2020. CrossrefGoogle Scholar

  • [16] H.J. Huang, C.R. Ross and F. Blecha: “Chemoattractant properties of PR-39, a neutrophil antibacterial peptide”, J. Leukoc. Biol., Vol. 61, (1997), pp. 624–629. Google Scholar

  • [17] Y.V. Chaly, E.M. Paleolog, T.S. Kolesnikova, I.I. Tikhonov, E.V. Petratchenko and N.N. Voitenok: “Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells”, Eur. Cytokine Netw., Vol. 11, (2000), pp. 257–266. Google Scholar

  • [18] S. Van Wetering, S.P. Mannesse-Lazeroms, J.H. Dijkman and P.S. Hiemstra: “Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production”, J. Leuok. Biol., Vol. 62, (1997), pp. 217–226. Google Scholar

  • [19] D. Yang, O. Chertov, S.N. Bykovskaia, Q. Chen, M.J. Buffo, J. Shogan, M. Anderson, J.M. Schröder, J.M. Wang, O.M.Z. Howard and J.J. Oppenheim: “β-Defensins: Linking Innate and Adaptive Immunity Through Dendritic and T Cell CCR6”, Science, Vol. 286, (1999), pp. 525–528. http://dx.doi.org/10.1126/science.286.5439.525CrossrefGoogle Scholar

  • [20] B.P.H.J. Thomma, B.P.A. Cammue and K. Thevissen: “Plant defensins”, Planta, Vol. 216, (2002), pp. 193–202. http://dx.doi.org/10.1007/s00425-002-0902-6CrossrefGoogle Scholar

  • [21] U.H. Durr, U.S. Sudheendra and A. Ramamoorthy: “LL-37, the only human member of the cathelicidin family of antimicrobial peptides”, Biochim. Biophys. Acta-Biomembranes, Vol. 1758, (2006), pp. 1408–1425. http://dx.doi.org/10.1016/j.bbamem.2006.03.030CrossrefGoogle Scholar

  • [22] M. Wachinger, A. Kleinschmidt, D. Winder, N. Von Pechmann, A. Ludvigsen, M. Neumann, R. Holle, B. Salmons, V. Erfle and R. Brack-Werner: “Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression”, J. Gen. Virol., Vol. 79, (1998), pp. 731–740. Google Scholar

  • [23] Y. Chen, X. Xu, S. Hong, J. Chen, N. Liu, C. B. Underhill, K. Creswell and L. Zhang: “RGD-tachyplesin inhibits tumor growth”, Cancer Res., Vol. 61, (2001), pp. 2434–2438. Google Scholar

  • [24] B.L. Kagan, M.E. Selsted, T. Ganz and R.I. Lehrer: “Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes”, Proc. Natl. Acad. Sci. U.S.A, Vol. 87, (1990), pp. 210–214. http://dx.doi.org/10.1073/pnas.87.1.210CrossrefGoogle Scholar

  • [25] A.J. Moore, D.A. Devine and M.C. Bibby: “Preliminary experimental anticancer activity of cecropins”, Pept. Res, Vol. 7, (1994), pp. 265–269. Google Scholar

  • [26] H.J. Vogel, D.J. Schibli, W. Jing, E.M. Lohmeier-Vogel, R.F. Epand and R.M. Epand: “Towards a structure-function analysis of bovine lactoferricin and related tryptophan and arginine-containing peptides”, Biochem. Cell Biol., Vol. 80, (2002), pp. 49–63. http://dx.doi.org/10.1139/o01-213CrossrefGoogle Scholar

  • [27] Y.C. Yoo, S. Watanabe, R. Watanabe, K. Hata, K. Shimazaki and I. Azuma: “Bovine lactoferrin and Lactoferricin inhibit tumor metastasis in mice”, Adv. Exp. Med. Biol., Vol. 443, (1998), pp. 285–291. Google Scholar

  • [28] S.R. Dennison, M. Whittaker, F. Harris and D.A. Phoenix: “Anticancer α-Helical Peptides and Structure / Function Relationships Underpinning Their Interactions with Tumour Cell Membranes”, Curr. Protein Pept. Sci., Vol. 7, (2006), pp. 487–499. http://dx.doi.org/10.2174/138920306779025611CrossrefGoogle Scholar

  • [29] H. Schröder-Borm, R. Bakalova and J. Andrä: “The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine”, FEBS Lett., Vol. 579, (2005), pp. 6128–6134. http://dx.doi.org/10.1016/j.febslet.2005.09.084CrossrefGoogle Scholar

  • [30] N. Papo and Y. Shai: “Host defense peptides as new weapons in cancer treatment”, Cell. Mol. Life Sci., Vol. 62, (2005), pp. 784–790. http://dx.doi.org/10.1007/s00018-005-4560-2CrossrefGoogle Scholar

  • [31] J. Pardo, P. Perez-Galan, S. Gamen, I. Marzo, I. Monleon, A.A. Kaspar, S.A. Susin, G. Kroemer, A.M. Krensky, J. Naval and A. Anel: “A role of the mitochondrial apoptosis inducing factor in granulysin-induced apoptosis”, J. Immunol., Vol. 167, (2001), pp. 1222–1229. Google Scholar

  • [32] T. Murakami, M. Niwa, F. Tokunaga, T. Miyata and S. Iwanaga: “Direct virus inactivation of tachyplesin I and its isopeptides from horseshoe crab hemocytes”, Chemotherapy, Vol. 37, (1991), pp. 327–334. http://dx.doi.org/10.1159/000238875CrossrefGoogle Scholar

  • [33] M. Masuda, H. Nakashima, T. Ueda, H. Naba, R. Ikoma, A. Otaka Y. Terakawa, H. Tamamura, T. Ibutaka, T. Murakami, Y. Koyanagi, M. Waki, A. Matsumoto, N. Yamamoto, S. Funakoshi and N. Fuji: “A novel anti-HIV synthetic peptide T-22 ([Tyr5,12,Lys7]-polyphemusin II)”, Biochem. Biophys. Res. Commun., Vol. 189, (1992), pp. 845–850. http://dx.doi.org/10.1016/0006-291X(92)92280-BCrossrefGoogle Scholar

  • [34] M. Morimoto, H. Mori, T. Otake, N. Ueba, N. Kunita, M. Niwa, T. Murakami and S. Iwanaga: “Inhibitory effect of tachyplesin I on the proliferation of human immunodeficiency virus in vitro”, Chemotherapy, Vol. 37, (1991), pp. 206–211. CrossrefGoogle Scholar

  • [35] T. Murakami, T. Nakajima, Y. Koyanagi, K. Tachibana, N. Fujii, H. Tamamura, N. Yoshida, M. Waki, A. Matsumoto, O. Yoshie, T. Kishimoto, N. Yamamoto and T. Nagasawa: “A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection”, J. Exp. Med., Vol. 186, (1997), pp. 1389–1393. http://dx.doi.org/10.1084/jem.186.8.1389CrossrefGoogle Scholar

  • [36] R.F. Epand, A. Ramamoorthy and R.M. Epand: “Membrane Lipid Composition and the Interaction of Pardaxin: The Role of Cholesterol”, Protein Pept. Lett., Vol. 13, (2006), pp. 1–5. http://dx.doi.org/10.2174/092986606774502063CrossrefGoogle Scholar

  • [37] F. Porcelli, B. Bethany, D.K. Lee, K.J. Hallock, A. Ramamoorthy and G. Veglia: “Structure and Orientation of Pardaxin Determined by NMR Experiments in Model Membranes”, J. Biol. Chem., Vol. 279, (2004), pp. 45815–45823. http://dx.doi.org/10.1074/jbc.M405454200CrossrefGoogle Scholar

  • [38] K.J. Hallock, D.K. Lee, J. Omnaas, H.I. Mosberg and A. Ramamoorthy: “Membrane Composition Determines Pardaxin’s Mechanism of Lipid Bilayer Disruption”, Biophys. J., Vol. 83, (2002), pp. 1004–1013. CrossrefGoogle Scholar

  • [39] F. Porcelli, B.A. Buck-Koehntop, S. Thennarasu, A. Ramamoorthy and G. Veglia: “Structures of the Dimeric and Monomeric Variants of Magainin Antimicrobial Peptides (MSI-78 and MSI-594) in Micelles and Bilayers, Determined by NMR Spectroscopy”, Biochemistry, Vol. 45, (2006), pp. 5793–5799. http://dx.doi.org/10.1021/bi0601813CrossrefGoogle Scholar

  • [40] A. Mecke, D.K. Lee, A. Ramamoorthy, B.G. Orr and M.M.B. Holl: “Membrane Thinning Due to Antimicrobial Peptide Binding: An Atomic Force Microscopy Study of MSI-78 in Lipid Bilayers”, Biophys. J., Vol. 89, (2005), pp. 4043–4050. http://dx.doi.org/10.1529/biophysj.105.062596CrossrefGoogle Scholar

  • [41] S. Thennarasu, D.K. Lee, A. Tan, U.P. Kari and A. Ramamoorthy: “Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843”, Biochim. Biophys. Acta, Vol. 1711, (2005), pp. 49–58. http://dx.doi.org/10.1016/j.bbamem.2005.02.010CrossrefGoogle Scholar

  • [42] A. Ramamoorthy, S. Thennarasu, A. Tan, D. Lee, C. Clayberger and A.M. Krensky: “Cell selectivity correlates with membrane-specific interactions: A case study on the antimicrobial peptide G15 derived from granulysin”, Biochim. Biophys. Acta, Vol. 1758, (2006), pp. 154–163. http://dx.doi.org/10.1016/j.bbamem.2006.02.014CrossrefGoogle Scholar

  • [43] A. Ramamoorthy, S. Thennarasu, A. Tan, K. Gottipati, S. Sreekumar, D.L. Heyl, F.Y.P. An and C.E. Shelburne: “Deletion of All Cysteines in Tachyplesin I Abolishes Hemolytic Activity and Retains Antimicrobial Activity and Lipopolysaccharide Selective Binding”, Biochemistry, Vol. 45, (2006), pp. 6529–6540. http://dx.doi.org/10.1021/bi052629qCrossrefGoogle Scholar

  • [44] S. Thennarasu, D.K. Lee, A. Poon, K.E. Kawulka, J.C. Vederas and A. Ramamoorthy: “Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A”, Chem. Phys. Lipids. Vol. 137, (2005), pp. 38–51. http://dx.doi.org/10.1016/j.chemphyslip.2005.06.003CrossrefGoogle Scholar

  • [45] J.P. Powersand and R.E.W. Hancock: “The relationship between peptide structure and antibacterial activity”, Peptides, Vol. 24, (2003), pp. 1681–1691. http://dx.doi.org/10.1016/j.peptides.2003.08.023CrossrefGoogle Scholar

  • [46] R. Yeaman and N.Y. Yount: “Mechanisms of antimicrobial peptide action and resistance”, Pharmacol. Rev., Vol. 55, (2003), pp. 27–55. http://dx.doi.org/10.1124/pr.55.1.2CrossrefGoogle Scholar

  • [47] K. Matsuzaki: “Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes”, Biochim. Biophys. Acta, Vol. 1462, (1999), pp. 1–10. http://dx.doi.org/10.1016/S0005-2736(99)00197-2CrossrefGoogle Scholar

  • [48] R.E.W. Hancock and D.S. Chapple: “Peptide antibiotics”, Antimicrob. Agents Chemother., Vol. 43, (1999), pp. 1317–1323. Google Scholar

  • [49] R.E.W. Hancock: “Peptide antibiotics”, Lancet, Vol. 349, (1997), pp. 418–422. http://dx.doi.org/10.1016/S0140-6736(97)80051-7CrossrefGoogle Scholar

  • [50] J.M. Sanderson: “Peptide-lipids interactions: insights and perspectives”, Org. Biomol. Chem., Vol.3, (2005), pp. 201–212. http://dx.doi.org/10.1039/b415499aCrossrefGoogle Scholar

  • [51] Y. Shai and Z. Oren: “From “carpet”mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides”, Peptides, Vol. 22, (2001), pp. 1629–1641. http://dx.doi.org/10.1016/S0196-9781(01)00498-3CrossrefGoogle Scholar

  • [52] N. Sitaram and R. Nagaraj: “Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity”, Biochim. Biophys Acta, Vol. 1462, (1999), pp. 29–54. http://dx.doi.org/10.1016/S0005-2736(99)00199-6CrossrefGoogle Scholar

  • [53] E. Breukink and B. de Kruijff: “The lantibiotic nisin, a special case or not?”, Biochim. Biophys. Acta, Vol. 1462, (1999), pp. 223–234. http://dx.doi.org/10.1016/S0005-2736(99)00208-4CrossrefGoogle Scholar

  • [54] R.I. Lehrer and T. Ganz: “Cathelicidins: a family of endogenous antimicrobial peptides”, Curr. Opin. Hematol., Vol. 9, (2002), pp. 18–22. http://dx.doi.org/10.1097/00062752-200201000-00004CrossrefGoogle Scholar

  • [55] M.S.P. Sansom: “Alamethicin and related peptaibols-model ion channels”, Eur. Biophys., Vol. 22, (1993), pp. 105–124. Google Scholar

  • [56] L. Yang, T.A. Harroun, T.M. Weiss, L. Ding and H.W. Huang: “Barrel-stave model or toroidal model? A case study on melittin pores”, Biophys. J., (2001), Vol. 81, pp. 1475–1485. CrossrefGoogle Scholar

  • [57] L. Beven, O. Helluin, G. Molle, H. Duclohier and H. Wroblewski: “Correlation between anti-bacterial activity and pore sizes of two classes of voltage-dependent channel-forming peptides”, Biochim. Biophys. Acta, Vol. 1421, (1999), pp. 53–63. http://dx.doi.org/10.1016/S0005-2736(99)00111-XCrossrefGoogle Scholar

  • [58] L. Yang, T.M. Weiss, R.I. Lehrer and H.W. Huang: “Crystallization of antimicrobial pores in membranes: magainin and protegrin”, Biophys. J., Vol. 79, (2001), pp. 2002–2009. Google Scholar

  • [59] K. Matsuzaki: “Magainins as paradigm for the mode of action of pore forming polypeptide”, Biochim. Biophys. Acta, Vol. 1376, (1998), pp. 391–400. Google Scholar

  • [60] K. Matsuzaki, O. Murase, N. Fujii and K. Miyajima: “An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation”, Biochemistry, Vol. 35, (1996), pp. 11361–11368. http://dx.doi.org/10.1021/bi960016vCrossrefGoogle Scholar

  • [61] B. Bechinger: “The structure, dynamics and orientation of antimicrobial peptides in membranes by solid-state NMR spectroscopy”, Biochim. Biophys. Acta, Vol. 1462, (1999), pp. 157–183. http://dx.doi.org/10.1016/S0005-2736(99)00205-9CrossrefGoogle Scholar

  • [62] R.A. Cruciani, J.L. Barker, S.R. Durell, G. Raghunathan, H.R. Guy, M. Zasloff and E.F Stanley: “Magainin 2: A natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes”, Eur. J. Pharmacol., Vol. 226, (1992), pp. 287–296. http://dx.doi.org/10.1016/0922-4106(92)90045-WCrossrefGoogle Scholar

  • [63] K.A. Brogden: “Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?”, Nature Rev. Microb., Vol. 3, (2005), pp. 238–250. http://dx.doi.org/10.1038/nrmicro1098CrossrefGoogle Scholar

  • [64] K.J. Hallock, D.K. Lee and A. Ramamoorthy: “MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain”, Biophys. J., Vol. 84, (2003), pp. 3052–3060. http://dx.doi.org/10.1016/S0006-3495(03)70031-9CrossrefGoogle Scholar

  • [65] K.A. Henzler Wildman, D.K. Lee and A. Ramamoorthy: “Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37”, Biochemistry, Vol. 42, (2003), pp. 6545–6558. http://dx.doi.org/10.1021/bi0273563CrossrefGoogle Scholar

  • [66] K.A. Henzler-Wildman, G.V. Martinez, M.F. Brown and A. Ramamoorthy: “Perturbation of the Hydrophobic Core of Lipid Bilayers by the Human Antimicrobial Peptide LL-37”, Biochemistry, Vol. 43, (2004), pp. 8459–8469. http://dx.doi.org/10.1021/bi036284sCrossrefGoogle Scholar

  • [67] T. Ganz and R.I. Lehrer: “Defensins”, Pharmacol. Ther., Vol. 66, (1995), pp. 191–205. http://dx.doi.org/10.1016/0163-7258(94)00076-FCrossrefGoogle Scholar

  • [68] A. Rozek, C.L. Friedrich and R.E.W. Hancock: “Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles”, Biochemistry, Vol. 39, (2000), pp. 15765–15774. http://dx.doi.org/10.1021/bi000714mCrossrefGoogle Scholar

  • [69] S. Vunnam, P. Juvvadi and R.B. Merrifield: “Synthesis and antibacterial action of cecropin and proline-arginine-rich peptides from pig intestine”, J. Pept. Res., Vol. 49, (1997), pp. 59–66. http://dx.doi.org/10.1111/j.1399-3011.1997.tb01121.xCrossrefGoogle Scholar

  • [70] P. Casteels and P. Tempst: “Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity”, Biochem. Biophys. Res. Commun., Vol. 199, (1994), pp. 339–345. http://dx.doi.org/10.1006/bbrc.1994.1234CrossrefGoogle Scholar

  • [71] P. Bulet, L. Urge, S. Ohresser, C. Hetru and L. Otvös: “Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila”, Eur. J. Biochem., Vol. 238, (1996), pp. 64–69. http://dx.doi.org/10.1111/j.1432-1033.1996.0064q.xCrossrefGoogle Scholar

  • [72] Subbalakshmi and N. Sitaram: “Mechanism of antimicrobial action of indolicidin”, FEMS Microbiol. Lett., Vol. 160, (1998), pp. 91–96. http://dx.doi.org/10.1111/j.1574-6968.1998.tb12896.xCrossrefGoogle Scholar

  • [73] A. Carlsson, P. Engström, E.T. Palva and H. Bennich: “Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription”, Infect. Immun., Vol. 59, (1991), pp. 3040–3045. Google Scholar

  • [74] J. Oh, Y. Cajal, E.M. Skowronska, S. Belkin, J. Chen, T.K. Van Dyk, R.M. Sasse and M.K. Jain: “Cationic peptide antimicrobials induce selective transcription of micF and osmY in Escherichia coli”, Biochim. Biophys. Acta, Vol. 1463, (2000), pp. 43–54. http://dx.doi.org/10.1016/S0005-2736(99)00177-7CrossrefGoogle Scholar

  • [75] V. Cabiaux, B. Agerberth, J. Johansson, F. Homblé, E. Goormaghtigh and J. M. Ruysschaert: “Secondary structure and membrane interaction of PR-39, a Pro+Arg-rich antibacterial peptide”, Eur. J. Biochem., Vol. 224, (1994), pp. 1019–1027. http://dx.doi.org/10.1111/j.1432-1033.1994.01019.xCrossrefGoogle Scholar

  • [76] H.G. Boman, B. Agerberth and A. Boman: “Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine”, Infect. Immun., Vol. 61, (1993), pp. 2978–2984. Google Scholar

  • [77] C.B. Park, H. S. Kim and S.C. Kim: “Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell mem brane and inhibiting cellular functions”, Biochem. Biophys. Res. Commun., Vol. 244, (1998), pp. 253–257. http://dx.doi.org/10.1006/bbrc.1998.8159CrossrefGoogle Scholar

  • [78] B. Skerlavaj, D. Romeo and R. Gennaro: “Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins”, Infect. Immun., Vol. 58, (1990), pp. 3724–3730. Google Scholar

  • [79] L. Otvos Jr., O. Insug, M.E. Rogers, P.J. Consolvo, B.A. Condie, S. Lovas, P. Bulet and M. Blaszczyk-Thurin: “Interaction between Heat Shock Proteins and Antimicrobial Peptides”, Biochemistry, Vol. 39, (2000), pp. 14150–14159. http://dx.doi.org/10.1021/bi0012843CrossrefGoogle Scholar

  • [80] L.S. Chesnokova, S.V. Slepenkov and S.N. Witt: “The insect antimicrobial peptide, L-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK”, FEBS Lett., Vol. 565, (2004), pp. 65–69. http://dx.doi.org/10.1016/j.febslet.2004.03.075CrossrefGoogle Scholar

  • [81] O. Toke: “Antimicrobial Peptides: New Candidates in the Fight Against Bacterial Infections”, Pept. Sci., Vol. 80, (2005), pp. 717–735. CrossrefGoogle Scholar

  • [82] R.E.W. Hancock and H.G. Sahl: “Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies”, Nature Biotechnol, Vol. 24, (2006), pp. 1551–1557. http://dx.doi.org/10.1038/nbt1267CrossrefGoogle Scholar

  • [83] M. Zasloff: “The Commercial Development of the Antimicrobial Peptide Pexiganan”, In: K. Lohner (Ed.): Development of Novel Antimicrobial Agents: Emerging Strategies, Horizon Scientific Press, Wymondham, UK, 2001, pp. 261–270. Google Scholar

  • [84] H.M. Lamb and L.R. Wiseman: “Pexiganan Acetate”, Drugs, Vol. 56, (1998), pp. 1047–1052. http://dx.doi.org/10.2165/00003495-199856060-00011CrossrefGoogle Scholar

  • [85] A. Trotti, A. Garden, P. Warde, P. Symonds, C. Langer, R. Redman, T.F. Pajak, T.R. Fleming, M. Henke, J. Bourhis, D.I. Rosenthal, E. Junor, A. Cmelak, F. Sheehan, J. Pulliam, P. Devitt-Risse, H. Fuchs, M. Chambers, B. O’sullivan and K.K. Ang: “A multinational, randomized phase III trial of iseganan-HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy”, Int. J. Radiat. Oncol. Biol. Phys., Vol. 58, (2004), pp. 674–681. http://dx.doi.org/10.1016/S0360-3016(03)01627-4CrossrefGoogle Scholar

  • [86] Y.J. Gordon, E.G. Romanowski and A.M. McDermott: “A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs”, Curr. Eye Res., Vol. 30, (2005), pp. 505–515. http://dx.doi.org/10.1080/02713680590968637CrossrefGoogle Scholar

  • [87] N. Markou, H. Apostolakos, C. Koumoudiou, M. Athanasiou, A. Koutsoukou, I. Alamanos and L. Gregorako: “Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients”, Crit. Care, Vol. 7, (2003), pp. 78–83. http://dx.doi.org/10.1186/cc2358CrossrefGoogle Scholar

  • [88] M.E. Falagas and S.K. Kasiakou: “Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections”, Clin. Infect. Dis., Vol. 40, (2005), pp. 1333–1341. http://dx.doi.org/10.1086/429323CrossrefGoogle Scholar

  • [89] A. Kubo, C.S. Lunde and I. Kubo: “Indole and (E)-2-hexenal, phytochemical potentiators of polymyxins against Pseudomonas aeruginosa and Escherichia coli”, Antimicrob. Agents. Chemother., Vol. 40, (1996), pp. 1438–1441. Google Scholar

  • [90] S.P. Conway, M.N. Pond, A. Watson, C. Etherington, H.L. Robey and M.H. Goldman: “Intravenous colistin sulphometate in acute respiratory exacerbations in adult patients with cystic fibrosis”, Thorax, Vol. 52, (1997), pp. 987–993. http://dx.doi.org/10.1136/thx.52.11.987CrossrefGoogle Scholar

  • [91] A. Pini, A. Giuliani, C. Falciani, Y. Runci, C. Ricci, B. Lelli, M. Malossi, P. Neri, G.M. Rossolini and L. Bracci: “Antimicrobial Activity of Novel Dendrimeric Peptides Obtained by Phage Display Selection and Rational Modification”, Antimicrob. Agents Chemother., Vol. 49, (2005), pp. 2665–2672. http://dx.doi.org/10.1128/AAC.49.7.2665-2672.2005CrossrefGoogle Scholar

  • [92] K.H. Mayo, J. Haseman, E. Ilyina and B. Gray: “Designed beta-sheet-forming peptide 33mers with potent human bactericidal/permeability increasing proteinlike bactericidal and endotoxin neutralizing activities”, Biochim. Biophys. Acta, Vol. 1425, (1998), pp. 81–92. Google Scholar

  • [93] P.H. Mygind, R.L. Fischer, K.M. Schnorr, M.T. Hansen, C.P. Sönksen, S. Ludvigsen, D. Raventós, S. Buskov, B. Christensen, L. De Maria, O. Taboureau, D. Yaver, S.G. Elvig-Jørgensen, M.V. Sørensen, B.E. Christensen, S. Kjærulff, N. Frimodt-Moller, R.I. Lehrer, M. Zasloff and H.-H. Kristensen: “Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus”, Nature, Vol. 437, (2005), pp. 975–980. http://dx.doi.org/10.1038/nature04051CrossrefGoogle Scholar

  • [94] M.M Welling, A. Paulusma-Annema, H.S. Balter, E.K. Pauwels and P.H. Nibbering: “Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations”, Eur. J. Nucl. Med., Vol. 24, (2004), pp. 292–301. Google Scholar

  • [95] A. Giacometti, O. Cirioni, F. Barchiesi and G. Scalise: “In-vitro activity and killing effect of polycationic peptides on methicillin-resistant Staphylococcus aureus and interactions with clinically used antibiotics”, Diagn. Microbiol. Infect. Dis., Vol. 38, (2000), pp. 115–118. http://dx.doi.org/10.1016/S0732-8893(00)00175-9CrossrefGoogle Scholar

  • [96] S.L. Haynie, G.A. Crum and B.A. Doele: “Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin”, Antimicrob. Agents Chemother. Vol. 39, (1995), pp. 301–307. Google Scholar

  • [97] J.K. Ghosh, D. Shaool, P. Guillaud, L. Ciceron, D. Mazier, I. Kustanovich, Y. Shai and A. Mor: “Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis”, J. Biol. Chem., Vol. 272, (1997), pp. 31609–31616. http://dx.doi.org/10.1074/jbc.272.50.31609CrossrefGoogle Scholar

  • [98] I. Ahmad, W.R. Perkins, D.M. Lupan, M.E. Selsted and A.S. Janoff: “Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity”, Biochim. Biophys. Acta, Vol. 1237, (1995), pp. 109–114. http://dx.doi.org/10.1016/0005-2736(95)00087-JCrossrefGoogle Scholar

  • [99] R. Raqib, P. Sarker, P. Bergman, G. Ara, M. Lindh, D.A. Sack, K.M. Nasirul Islam, G.H. Gudmundsson, J. Andersson and B. Agerberth: “Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic.”, Proc. Natl. Acad. Sci., Vol. 103, (2006), pp. 9178–9183. http://dx.doi.org/10.1073/pnas.0602888103CrossrefGoogle Scholar

  • [100] S. Kim, S.S Kim, Y.J. Bang, S.J. Kim and B.J. Lee: “In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines”, Peptides, Vol. 24, (2003), pp. 945–953. http://dx.doi.org/10.1016/S0196-9781(03)00194-3CrossrefGoogle Scholar

  • [101] S.A. Johnstone, K. Gelmon, L.D. Mayer, R.E. Hancock and M.B. Bally: “In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines”, Anticancer Drug. Res., Vol. 15, (2000), pp. 151–160. Google Scholar

  • [102] C. Leuschner and W. Hansel: “Membrane Disrupting Lytic Peptides for Cancer Treatments”, Curr. Pharm. Design, Vol. 10, (2004), pp. 2299–2310. http://dx.doi.org/10.2174/1381612043383971CrossrefGoogle Scholar

  • [103] D. Winder, W.H. Gunzburg, V. Erfle and B. Salmons: “Expression of antimicrobial peptides has an antitumour effect in human cells”, Biochem. Biophys. Res. Commun., Vol. 242, (1998) pp. 608–612. http://dx.doi.org/10.1006/bbrc.1997.8014CrossrefGoogle Scholar

  • [104] A.K. Marr, W.J. Gooderham and R.E.W. Hancock: “Antibacterial peptides for therapeutic use: obstacles and realistic outlook”, Curr. Opin. Pharmacol., Vol. 6, (2006), pp. 468–472. http://dx.doi.org/10.1016/j.coph.2006.04.006CrossrefGoogle Scholar

  • [105] C. Haught, G.D. Davis, R. Subramanian, K.W. Jackson and R.G. Harrison: “Recombinant Production and Purification of Novel Antisense Antimicrobial Peptide in Escherichia coli”, Biotech. Bioeng., Vol. 57, (1998), pp. 55–61. http://dx.doi.org/10.1002/(SICI)1097-0290(19980105)57:1<55::AID-BIT7>3.0.CO;2-UCrossrefGoogle Scholar

  • [106] E.A. Groisman: “The ins and outs of virulence gene expression: Mg2+ as a regulatory signal”, Bioessays, Vol. 20, (1998), pp. 96–101. http://dx.doi.org/10.1002/(SICI)1521-1878(199801)20:1<96::AID-BIES13>3.0.CO;2-3CrossrefGoogle Scholar

  • [107] J.S. Gunn, S.S. Ryan, J.C. Van Velkinburgh, R.K. Ernst and S.I. Miller: “Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium”, Infect. Immun., Vol. 68, (2000), pp. 6139–6146. http://dx.doi.org/10.1128/IAI.68.11.6139-6146.2000CrossrefGoogle Scholar

  • [108] C. Friedrich, M.G. Scott, N. Karunaratne, H. Yan and R.E.W. Hancock: “Salt-resistant alpha-helical cationic antimicrobial peptides”, Antimicrob. Agents Chemother., Vol. 43, (1999), pp. 1542–1548. Google Scholar

  • [109] G.G. Perron, M. Zasloff and G. Bell: “Experimental evolution of resistance to an antimicrobial peptide”, Proc. Biol. Sci., Vol. 273, (2006), pp. 251–256. http://dx.doi.org/10.1098/rspb.2005.3301CrossrefGoogle Scholar

  • [110] O. Sørensen, T. Bratt, A.H. Johnsen, M.T. Madsen and N. Borregaard: “The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma”, J. Biol. Chem., Vol. 274, (1999), pp. 22445–22451. http://dx.doi.org/10.1074/jbc.274.32.22445CrossrefGoogle Scholar

  • [111] C. Adessi and C. Soto: “Converting a peptide into a drug: strategies to improve stability and bioavailability”, Curr. Med. Chem., Vol. 9, (2002), pp. 963–978. http://dx.doi.org/10.2174/0929867024606731CrossrefGoogle Scholar

  • [112] M. Goodman, C. Zapf and Y. Rew: “New reagents, reactions, and peptidomimetics for drug design”, Biopolymers, Vol. 60, (2001), pp. 229–245. http://dx.doi.org/10.1002/1097-0282(2001)60:3<229::AID-BIP10034>3.0.CO;2-PCrossrefGoogle Scholar

  • [113] A. Wiest, D. Grzegorski, B.W. Xu, C. Goulard, S. Rebuffat, D.J. Ebbole, B. Bodo and C. Kenerley: “Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase”, J. Biol. Chem., Vol. 277, (2002), pp. 20862–20868. http://dx.doi.org/10.1074/jbc.M201654200CrossrefGoogle Scholar

  • [114] A. Banerjee, A. Pramanik, S. Bhattacharjya and P. Balaram: “Omega amino acids in peptide design: incorporation into helices”, Biopolymers, Vol. 39, (1996), pp. 769–777. http://dx.doi.org/10.1002/(SICI)1097-0282(199612)39:6<769::AID-BIP4>3.0.CO;2-TCrossrefGoogle Scholar

  • [115] J.M. Ostresh, S.E. Blondelle, B. Dörner and R.A. Houghten: “Generation and use of nonsupported-bound peptide and peptidomimetic combinatorial libraries”, Methods Enzymol., Vol. 267, (1996), pp. 220–234. http://dx.doi.org/10.1016/S0076-6879(96)67015-3CrossrefGoogle Scholar

  • [116] A. Wessolowski, M. Bienert and M. Dathe: “Antimicrobial activity of arginineand tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization”, J. Pept. Res., Vol. 64, (2004), pp. 159–169. http://dx.doi.org/10.1111/j.1399-3011.2004.00182.xCrossrefGoogle Scholar

  • [117] D. Gimenez, C. Andreu, M. del Olmo, T. Varea, D. Diaz and G. Asensio: “The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity”, Bioorg. Med. Chem., Vol. 14, (2006), pp. 6971–6978. http://dx.doi.org/10.1016/j.bmc.2006.06.027CrossrefGoogle Scholar

  • [118] M. Dathe, J. Meyer, M. Beyermann, B. Maul, C. Hoischen and M. Bienert: “General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides”, Biochim. Biophys. Acta, Vol. 1558, (2002), pp. 171–186. http://dx.doi.org/10.1016/S0005-2736(01)00429-1CrossrefGoogle Scholar

  • [119] Z. Oren, J. Ramesh, D. Avrahami, N. Suryaprakash, Y. Shai and R. Jelinek: “Structures and mode of membrane interaction of a short alpha helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy”, Eur. J. Biochem., Vol. 269, (2002), pp. 3869–3880. http://dx.doi.org/10.1046/j.1432-1033.2002.03080.xCrossrefGoogle Scholar

  • [120] S.-T Yang, S.Y. Shin, C.W. Lee, Y.-C. Kim, K.-S Hahm and J.I. Kim: “Selective cytotoxicity following Arg-to-Lys substitution in tritrpticin adopting a unique amphipathic turn structure”, FEBS Lett., Vol. 540, (2003), pp. 229–233. http://dx.doi.org/10.1016/S0014-5793(03)00266-7CrossrefGoogle Scholar

  • [121] S.E. Blondelle and K. Lohner: “Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies”, Biopolymers, Vol. 55, (2000), pp. 74–87. http://dx.doi.org/10.1002/1097-0282(2000)55:1<74::AID-BIP70>3.0.CO;2-SCrossrefGoogle Scholar

  • [122] A. Malina and Y. Shai: “Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide”, Biochem. J., Vol. 390, (2005), pp. 695–702. Google Scholar

  • [123] L. Otvos Jr., C. Snyder, B. Condie, P. Bulet and J.D. Wade: “Chimeric Antimicrobial Peptides Exhibit Multiple Modes of Action”, Int. J. Pept. Res. Ther., Vol. 11, (2005), pp. 29–42. http://dx.doi.org/10.1007/s10989-004-1719-xCrossrefGoogle Scholar

  • [124] R. Eckert, F. Qi, D.K. Yarbrough, J. He, M.H. Anderson and W. Shi: “Adding Selectivity to Antimicrobial Peptides: Rational Design of a Multidomain Peptide against Pseudomonas spp.”, Antimicrob. Agents Chemother., Vol. 50, (2006), pp. 1480–1488. http://dx.doi.org/10.1128/AAC.50.4.1480-1488.2006CrossrefGoogle Scholar

  • [125] C. Loose, K. Jensen, I. Rigoutsos and G. Stephanopoulos: “A linguistic model for the rational design of antimicrobial peptides”, Nature, Vol. 443, (2006), pp. 867–869. http://dx.doi.org/10.1038/nature05233CrossrefGoogle Scholar

  • [126] I. Rigoutsos and A. Floratos: “Combinatorial pattern discovery in biological sequences: The TEIRESIAS algorithm”, Bioinformatics, Vol. 14, (1998), pp. 55–67. http://dx.doi.org/10.1093/bioinformatics/14.1.55CrossrefGoogle Scholar

  • [127] K. Hilpert, M.R. Elliott, R. Volkmer-Engert, P. Henklein, O. Donini, Q. Zhou, D.F. Winkler and R.E.W. Hancock: “Sequence requirements and an optimization strategy for short antimicrobial peptides”, Chem. Biol., Vol. 13, (2006), pp. 1101–1107. http://dx.doi.org/10.1016/j.chembiol.2006.08.014CrossrefGoogle Scholar

  • [128] K. Hilpert, R. Volkmer-Engert, T. Walterand and R.E.W. Hancock: “High-throughput generation of small antibacterial peptides with improved activity”, Nature Biotechnol., Vol. 23, (2005), pp. 1008–1012. http://dx.doi.org/10.1038/nbt1113CrossrefGoogle Scholar

  • [129] V. Nagarajan, N. Kaushik, B. Murali, C. Zhang, S. Lakhera, M.O. Elasri and Y. Deng: “A Fourier Transformation based method to mine peptide space for antimicrobial activity”, BMC Bioinformatics, Vol. 7, Suppl. 2, (2006). Google Scholar

  • [130] A.D. McLachlan: “Analysis of periodic patterns in amino acid sequences: collagen”, Biopolymers, Vol. 16, (1977), pp. 1271–1297. http://dx.doi.org/10.1002/bip.1977.360160609CrossrefGoogle Scholar

  • [131] S. Tiwari, S. Ramachandran, A. Bhattacharya, S. Bhattacharya and R. Ramaswamy: “Prediction of probable genes by fourier analysis of genomic sequences”, Comput. Appl. Biosci., Vol. 13, (1997), pp. 263–270. Google Scholar

  • [132] D.J. Christensen, E.B. Gottlin, R.E. Benson and P.T. Hamilton: “Phage display for target-based antibacterial drug discovery”, Drug Discov. Today., Vol. 6, (2001), pp. 721–727. http://dx.doi.org/10.1016/S1359-6446(01)01853-0CrossrefGoogle Scholar

  • [133] F. Sanschagrin and R.C. Levesque: “A specific peptide inhibitor of the class B metallo-ß-lactamase L-1 from Stenotrophomonas maltophilia identified using phage display”, J. Antimicrob. Chemother., Vol. 55, (2005), pp. 252–255. http://dx.doi.org/10.1093/jac/dkh550Google Scholar

  • [134] R. Hyde-DeRuyscher, L.A. Paige, D.J. Christensen, N. Hyde-DeRuyscher, A. Lim, Z.L. Fredericks, J. Kranz, P. Gallant, J. Zhang, S.M. Rocklage, D.M. Fowlkes, P.A. Wendler and P.T. Hamilton: “Detection of small-molecule enzyme inhibitors with peptides isolated from phage-displayed combinatorial peptide libraries”, Chem. Biol., Vol. 7, (2000), pp. 17–25. http://dx.doi.org/10.1016/S1074-5521(00)00062-4CrossrefGoogle Scholar

  • [135] H. Grøn and R. Hyde-DeRuyscher: “Peptides as tools in drug discovery”, Curr. Opin. Drug Disc., Vol. 3, (2000), pp. 636–645. Google Scholar

  • [136] C. Galanos, O. Luderitz, E.T. Rietschel and O. Westphal: “Newer aspects of the chemistry and biology of bacterial lipopolysaccharides with special reference to their lipid A component”, Int. Rev. Biochem. Vol. 14, (1977), pp. 239–334. Google Scholar

  • [137] C.J. Thomas, S. Sharma, G. Kumar, S.S. Visweswariah and A. Surolia: “Biopanning of endotoxin-specific phage displayed peptides”, Biochem. Biophys. Res. Commun., Vol. 307, (2003), pp. 133–138. http://dx.doi.org/10.1016/S0006-291X(03)01136-7CrossrefGoogle Scholar

  • [138] J. Tao, P. Wendler, G. Connelly, A. Lim, J. Zhang, M. King, T. Li, J.A. Silverman, P.R. Schimmel and F.P. Tally: “Drug target validation: lethal infection blocked by inducible peptide”, Proc. Natl. Acad. Sci. U.S.A., Vol. 97, (2000), pp. 783–786. http://dx.doi.org/10.1073/pnas.97.2.783CrossrefGoogle Scholar

  • [139] J.P. Tam: “Synthetic peptide vaccine design: synthesis and properties of a highdensity multiple antigenic peptide system”, Proc. Natl. Acad. Sci. U.S.A., Vol. 85, (1988), pp. 5409–5413. http://dx.doi.org/10.1073/pnas.85.15.5409CrossrefGoogle Scholar

  • [140] C.C. Lee, J.A. MacKay, J.M.J. Fréchet and F.C. Szoka: “Designing dendrimers for biological applications”, Nature Biotechnol., Vol. 23, (2005), pp. 1517–1526. http://dx.doi.org/10.1038/nbt1171CrossrefGoogle Scholar

  • [141] L. Bracci, L. Lozzi, A. Pini, B. Lelli, C. Falciani, N. Niccolai, A. Bernini, A. Spreafico, P. Soldani and P. Neri: “A branched peptide mimotope of the nicotinic receptor binding site is a potent synthetic antidote against the snake neurotoxin alpha-bungarotoxin”, Biochemistry, Vol. 41, (2002), pp. 10194–10199. http://dx.doi.org/10.1021/bi0256025CrossrefGoogle Scholar

  • [142] L. Lozzi, B. Lelli, Y. Runci, S. Scali, A. Bernini, C. Falciani, A. Pini, N. Niccolai, P. Neri and L. Bracci: “Rational design and molecular diversity for the construction of anti-alpha-bungarotoxin antidotes with high affinity and in vivo efficiency”, Chem. Biol., Vol. 10, (2003), pp. 411–417. http://dx.doi.org/10.1016/S1074-5521(03)00094-2CrossrefGoogle Scholar

  • [143] L. Bracci, C. Falciani, B. Lelli, L. Lozzi, Y. Runci, A. Pini, M. G. De Montis, A. Tagliamonte, and P. Neri: “Synthetic peptides in the form of dendrimers become resistant to protease activity”, J. Biol. Chem., Vol. 278, (2003), 46590–46595. http://dx.doi.org/10.1074/jbc.M308615200CrossrefGoogle Scholar

  • [144] J.P. Tam, Y.A. Lu and J.L. Yang: “Antimicrobial dendrimeric peptides”, Eur. J. Biochem., Vol. 269, (2002), pp. 923–932. http://dx.doi.org/10.1046/j.0014-2956.2001.02728.xCrossrefGoogle Scholar

  • [145] J. Janiszewska, J. Swieton, A.W. Lipkowski and Z. Urbanczyk-Lipkowska: “Low molecular mass peptide dendrimers that express antimicrobial properties”, Bioorg. Med. Chem. Lett., Vol. 13, (2003), pp. 3711–3713. http://dx.doi.org/10.1016/j.bmcl.2003.08.009CrossrefGoogle Scholar

About the article

Published Online: 2007-03-01

Published in Print: 2007-03-01

Citation Information: Open Life Sciences, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-007-0010-5.

Export Citation

© 2007 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Thomas A. Bakka, Morten B. Strøm, Jeanette H. Andersen, and Odd R. Gautun
Bioorganic & Medicinal Chemistry, 2017
Pavel Melicherčík, Václav Čeřovský, Ondřej Nešuta, David Jahoda, Ivan Landor, Rastislav Ballay, and Petr Fulín
Folia Microbiologica, 2017
Rushikesh Sable, Pravin Parajuli, and Seetharama Jois
Marine Drugs, 2017, Volume 15, Number 4, Page 124
Baldur Sveinbjørnsson, Ketil Andre Camilio, Bengt Erik Haug, and Øystein Rekdal
Future Medicinal Chemistry, 2017, Volume 9, Number 12, Page 1339
Claudia Schinke, Thamires Martins, Sonia C. N. Queiroz, Itamar S. Melo, and Felix G. R. Reyes
Journal of Natural Products, 2017, Volume 80, Number 4, Page 1215
Yu Zhang, Songcai Liu, Siming Li, Yunyun Cheng, Linyan Nie, Gang Wang, Chen Lv, Wenzhen Wei, Cheng Cheng, Feng Hou, and Linlin Hao
Journal of Peptide Science, 2017, Volume 23, Number 5, Page 403
Monalisa M. Trentini, Rogério C. das Neves, Bruno de Paula Oliveira Santos, Roosevelt A. DaSilva, Adolfo C. Barros de Souza, Márcia R. Mortari, Elisabeth F. Schwartz, André Kipnis, and Ana P. Junqueira-Kipnis
Frontiers in Microbiology, 2017, Volume 8
Alexandra Plácido, Idalina Bragança, Mariela Marani, Alyne Rodrigues de Araujo, Andreanne Gomes Vasconcelos, Krystallenia Batziou, Valentina F. Domingues, Peter Eaton, José Roberto S.A. Almeida Leite, and Cristina Delerue-Matos
Materials Science and Engineering: C, 2017, Volume 75, Page 503
Seung Chul Shin, In Hye Ahn, Do Hwan Ahn, Yung Mi Lee, Jungeun Lee, Jun Hyuck Lee, Han-Woo Kim, Hyun Park, and Massimiliano Galdiero
PLOS ONE, 2017, Volume 12, Number 1, Page e0170821
Hweh Fen Goh, Koshy Philip, and George-John Nychas
PLOS ONE, 2015, Volume 10, Number 10, Page e0140434
Margit Mahlapuu, Joakim Håkansson, Lovisa Ringstad, and Camilla Björn
Frontiers in Cellular and Infection Microbiology, 2016, Volume 6
Lyn-Fay Lee, Vanitha Mariappan, Kumutha Malar Vellasamy, Vannajan Sanghiran Lee, and Jamuna Vadivelu
PeerJ, 2016, Volume 4, Page e2468
Yuan Cao, Giang K. T. Nguyen, Samuel Chuah, James P. Tam, and Chuan-Fa Liu
Bioconjugate Chemistry, 2016, Volume 27, Number 11, Page 2592
Meng Zhu, Peng Liu, and Zhong-Wei Niu
Chinese Chemical Letters, 2017, Volume 28, Number 4, Page 703
Tao Li, Xiaomei Wang, Yan Wang, Tianguo Fan, Yunxia Xu, and Ze Fan
International Journal of Peptide Research and Therapeutics, 2017, Volume 23, Number 2, Page 227
Miray Tonk, Andreas Vilcinskas, and Mohammad Rahnamaeian
Applied Microbiology and Biotechnology, 2016, Volume 100, Number 17, Page 7397
Xiaoli Liu, Rui Cao, Sha Wang, Junli Jia, and Hao Fei
Journal of Medicinal Chemistry, 2016, Volume 59, Number 11, Page 5238
Hongbo Yi, Lin Zhang, Zhenshun Gan, Haitao Xiong, Caihua Yu, Huahua Du, and Yizhen Wang
Scientific Reports, 2016, Volume 6, Number 1
J. Derk te Winkel, Declan A. Gray, Kenneth H. Seistrup, Leendert W. Hamoen, and Henrik Strahl
Frontiers in Cell and Developmental Biology, 2016, Volume 4
Ondřej Nešuta, Rozálie Hexnerová, Miloš Buděšínský, Jiřina Slaninová, Lucie Bednárová, Romana Hadravová, Jakub Straka, Václav Veverka, and Václav Čeřovský
Journal of Natural Products, 2016, Volume 79, Number 4, Page 1073
Eanna Forde and Marc Devocelle
Molecules, 2015, Volume 20, Number 1, Page 1210
Corina Ciobanasu, Agnieszka Rzeszutek, Ulrich Kubitscheck, and Regine Willumeit
Molecules, 2015, Volume 20, Number 4, Page 6941
Bartłomiej Dziuba and Marta Dziuba
International Journal of Molecular Sciences, 2014, Volume 15, Number 8, Page 14531
Vanesa Andreu, Gracia Mendoza, Manuel Arruebo, and Silvia Irusta
Materials, 2015, Volume 8, Number 8, Page 5154
Jiří Danihlík, Kate Aronstein, and Marek Petřivalský
Journal of Apicultural Research, 2015, Volume 54, Number 2, Page 123
Sina Jordan, Matthew I. Hutchings, and Thorsten Mascher
FEMS Microbiology Reviews, 2008, Volume 32, Number 1, Page 107
Shneh Sethi, Ulrich Thormann, Ursula Sommer, Sabine Stötzel, Walid Mohamed, Reinhard Schnettler, Eugen Domann, Trinad Chakraborty, and Volker Alt
Bone, 2015, Volume 78, Page 194
Tomoya Yamashita, Takefumi Kuranaga, and Masayuki Inoue
Organic Letters, 2015, Volume 17, Number 9, Page 2170
Belal J. Muhialdin, Zaiton Hassan, Fatimah Abu Bakar, Hussein L. Algboory, and Nazamid Saari
Journal of Food Science, 2015, Volume 80, Number 5, Page M1026
Jorrit J. Water, YongTae Kim, Morten J. Maltesen, Henrik Franzyk, Camilla Foged, and Hanne M. Nielsen
Pharmaceutical Research, 2015
Galina M. Zats, Marina Kovaliov, Amnon Albeck, and Shimon Shatzmiller
Journal of Peptide Science, 2015, Volume 21, Number 6, Page 512
R. López-Rojas, F. Docobo-Pérez, M. E. Pachón-Ibáñez, B. G. Torre, M. Fernández-Reyes, C. March, J. A. Bengoechea, D. Andreu, L. Rivas, and J. Pachón
European Journal of Clinical Microbiology & Infectious Diseases, 2011, Volume 30, Number 11, Page 1391
Deniz T. Yucesoy, Marketa Hnilova, Kyle Boone, Paul M. Arnold, Malcolm L. Snead, and Candan Tamerler
JOM, 2015, Volume 67, Number 4, Page 754
Maria Abedinzadeh, Mahdieh Gaeini, and Soroush Sardari
Journal of Antimicrobial Chemotherapy, 2015, Volume 70, Number 5, Page 1285
Ammar Almaaytah, Shadi Tarazi, Mohammad Al-Fandi, Ahmad Abuilhaija, Nizar Al-shar’i, Qosay Al-Balas, and Aymen Abu-Awad
International Journal of Peptide Research and Therapeutics, 2015, Volume 21, Number 2, Page 165
Xin Deng, Qianqian Qiu, Baowei Yang, Xuekun Wang, Wenlong Huang, and Hai Qian
European Journal of Medicinal Chemistry, 2015, Volume 89, Page 540
Yang Wang, Jianbo Chen, Xin Zheng, Xiaoli Yang, Panpan Ma, Ying Cai, Bangzhi Zhang, and Yuan Chen
Journal of Peptide Science, 2014, Volume 20, Number 12, Page 945
Jiaxin Zhang, Ali Movahedi, Xiaoli Wang, Xiaolong Wu, Tongming Yin, and Qiang Zhuge
Peptides, 2015, Volume 68, Page 197
Wenyi Li, Julien Tailhades, Neil M. O’Brien-Simpson, Frances Separovic, Laszlo Otvos, M. Akhter Hossain, and John D. Wade
Amino Acids, 2014, Volume 46, Number 10, Page 2287
Geraldine S. Lim, Jernej Zidar, Daniel W. Cheong, Stephan Jaenicke, and Marco Klähn
The Journal of Physical Chemistry B, 2014, Volume 118, Number 35, Page 10444
Teerakul Arpornsuwan, Wimolpak Sriwai, Janthima Jaresitthikunchai, Narumon Phaonakrop, Hathaitip Sritanaudomchai, and Sittiruk Roytrakul
International Journal of Peptide Research and Therapeutics, 2014, Volume 20, Number 4, Page 501
Annette Meister, Sebastian Finger, Gerd Hause, and Alfred Blume
European Journal of Lipid Science and Technology, 2014, Volume 116, Number 9, Page 1228
Adam J. Dobson, Joanne Purves, and Jens Rolff
Evolutionary Applications, 2014, Volume 7, Number 8, Page 905
Anchalee Tassanakajon, Kunlaya Somboonwiwat, and Piti Amparyup
Developmental & Comparative Immunology, 2015, Volume 48, Number 2, Page 324
Sandeep Lohan, Jitender Monga, Swaranjit Singh Cameotra, and Gopal Singh Bisht
European Journal of Medicinal Chemistry, 2014, Volume 88, Page 19
Chunmei Wang, Fangzhou Chen, Han Hu, Wentao Li, Yang Wang, Pin Chen, Yingyu Liu, Xugang Ku, Qigai He, Huanchun Chen, and Feiqun Xue
Journal of Molecular Microbiology and Biotechnology, 2014, Volume 24, Number 2, Page 120
Santi M. Mandal, Anupam Roy, Ananta K. Ghosh, Tapas K. Hazra, Amit Basak, and Octavio L. Franco
Frontiers in Pharmacology, 2014, Volume 5
Ramamourthy Gopal, Jun Lee, Young Kim, Myeong-Sun Kim, Chang Seo, and Yoonkyung Park
Marine Drugs, 2013, Volume 11, Number 6, Page 1836
M. P. Ali, Katsuhiko Yoshimatsu, Tomohiro Suzuki, Tatsuya Kato, and Enoch Y. Park
Applied Microbiology and Biotechnology, 2014, Volume 98, Number 16, Page 6973
Garry Laverty, Sean P. Gorman, and Brendan F. Gilmore
International Journal of Molecular Sciences, 2011, Volume 12, Number 12, Page 6566
Wataru Aoki and Mitsuyoshi Ueda
Pharmaceuticals, 2013, Volume 6, Number 8, Page 1055
Václav Čeřovský and Robert Bém
Pharmaceuticals, 2014, Volume 7, Number 3, Page 251
Rob C.A. Keller
International Journal of Molecular Sciences, 2011, Volume 12, Number 12, Page 5577
M. Wenzel, A. I. Chiriac, A. Otto, D. Zweytick, C. May, C. Schumacher, R. Gust, H. B. Albada, M. Penkova, U. Kramer, R. Erdmann, N. Metzler-Nolte, S. K. Straus, E. Bremer, D. Becher, H. Brotz-Oesterhelt, H.-G. Sahl, and J. E. Bandow
Proceedings of the National Academy of Sciences, 2014, Volume 111, Number 14, Page E1409
Lenka Monincová, Václav Veverka, Jiřina Slaninová, Miloš Buděšínský, Vladimír Fučík, Lucie Bednárová, Jakub Straka, and Václav Čeřovský
Journal of Peptide Science, 2014, Volume 20, Number 6, Page 375
Wanda Barzyk, Ewa Rogalska, and Katarzyna Więcław-Czapla
Biochemistry Research International, 2013, Volume 2013, Page 1
Lenka Monincová, Milos Buděšínský, Sabina Čujová, Václav Čeřovský, and Václav Veverka
ChemBioChem, 2014, Volume 15, Number 2, Page 301
Tania Kjellerup Lind, Paulina Zielińska, Hanna Pauliina Wacklin, Zofia Urbańczyk-Lipkowska, and Marité Cárdenas
ACS Nano, 2014, Volume 8, Number 1, Page 396
Sukhada Mohandas, H.D. Sowmya, A.K. Saxena, S. Meenakshi, R. Thilaka Rani, and Riaz Mahmood
Scientia Horticulturae, 2013, Volume 164, Page 392
Ana M. Bouchet, Nancy B. Iannucci, María B. Pastrian, Osvaldo Cascone, Nuno C. Santos, Edgardo A. Disalvo, and Axel Hollmann
Colloids and Surfaces B: Biointerfaces, 2014, Volume 114, Page 363
Frantz L. Jean-Francois, Jian Dai, Lu Yu, Alissa Myrick, Eric Rubin, Piotr G. Fajer, Likai Song, Huan-Xiang Zhou, and Timothy A. Cross
Journal of Molecular Biology, 2014, Volume 426, Number 2, Page 436
Gadzikano Munyuki, Graham E. Jackson, Gerhard A. Venter, Katalin E. Kövér, László Szilágyi, Marina Rautenbach, Barbara M. Spathelf, Bhaswati Bhattacharya, and David van der Spoel
Biochemistry, 2013, Volume 52, Number 44, Page 7798
Y. Gu, N. Dong, A. Shan, Q. Ma, J. Li, and B. Cheng
Acta Biochimica et Biophysica Sinica, 2013, Volume 45, Number 11, Page 904
Chakresh K. Jain, Raman Sethi, Vanashika Sharma, Ashwani Mathur, and Sanjeev K. Sharma
International Journal of Peptide Research and Therapeutics, 2014, Volume 20, Number 1, Page 71
J. Michael Henderson and Ka Yee C. Lee
Current Opinion in Solid State and Materials Science, 2013, Volume 17, Number 4, Page 175
Wataru Aoki, Yohei Tatsukami, Nao Kitahara, Kazuma Matsui, Hironobu Morisaka, Kouichi Kuroda, and Mitsuyoshi Ueda
Journal of Proteomics, 2013, Volume 91, Page 417
Sandeep Lohan, Swaranjit S. Cameotra, and Gopal S. Bisht
Chemical Biology & Drug Design, 2013, Volume 82, Number 5, Page 557
Pei Yang, Fu-Gen Wu, and Zhan Chen
The Journal of Physical Chemistry C, 2013, Volume 117, Number 33, Page 17039
Indresh Kumar Maurya, Chaitanya Kumar Thota, Jyotsna Sharma, Santosh Genba Tupe, Preeti Chaudhary, Manoj Kumar Singh, Indu Shekhar Thakur, Mukund Deshpande, Rajendra Prasad, and Virander Singh Chauhan
Biochimica et Biophysica Acta (BBA) - General Subjects, 2013, Volume 1830, Number 11, Page 5193
Nina Bionda, Jean-Philippe Pitteloud, and Predrag Cudic
Future Medicinal Chemistry, 2013, Volume 5, Number 11, Page 1311
Di Wu, Yinghu Lu, Huoqing Huang, Lijuan Ma, Yuanyuan Che, Xiangdong Zha, Bin Yao, and Peilong Yang
Protein Expression and Purification, 2013, Volume 91, Number 1, Page 49
Goran Gajski and Vera Garaj-Vrhovac
Environmental Toxicology and Pharmacology, 2013, Volume 36, Number 2, Page 697
Géssika Silva Souza, Viviane Veiga do Nascimento, Laís Pessanha de Carvalho, Edésio José Tenório de Melo, Keysson Vieira Fernandes, Olga Lima Tavares Machado, Claudio Andres Retamal, Valdirene Moreira Gomes, and André de Oliveira Carvalho
Experimental Parasitology, 2013, Volume 135, Number 1, Page 116
Justyna Jarczak, Ewa M. Kościuczuk, Paweł Lisowski, Nina Strzałkowska, Artur Jóźwik, Jarosław Horbańczuk, Józef Krzyżewski, Lech Zwierzchowski, and Emilia Bagnicka
Human Immunology, 2013, Volume 74, Number 9, Page 1069
Nina Bionda, Renee M. Fleeman, Lindsey N. Shaw, and Predrag Cudic
ChemMedChem, 2013, Volume 8, Number 8, Page 1394
E. R. Chaithanya, Rosamma Philip, Naveen Sathyan, P. R. Anil Kumar, Sherine Sonia Cubelio, and I. S. Bright Singh
Probiotics and Antimicrobial Proteins, 2013, Volume 5, Number 3, Page 187
Zahra Mohammadi, Ameneh Sazgarnia, Omid Rajabi, Samaneh Soudmand, Habibollah Esmaily, and Hamid Reza Sadeghi
Photodiagnosis and Photodynamic Therapy, 2013, Volume 10, Number 4, Page 382
Sabína Čujová, Jiřina Slaninová, Lenka Monincová, Vladimír Fučík, Lucie Bednárová, Jitka Štokrová, Oldřich Hovorka, Zdeněk Voburka, Jakub Straka, and Václav Čeřovský
Amino Acids, 2013, Volume 45, Number 1, Page 143
Xuan Xiao, Pu Wang, Wei-Zhong Lin, Jian-Hua Jia, and Kuo-Chen Chou
Analytical Biochemistry, 2013, Volume 436, Number 2, Page 168
Ana Badea, François Eudes, Andre Laroche, Rob Graf, Ketan Doshi, Eric Amundsen, Denise Nilsson, and Byron Puchalski
Canadian Journal of Plant Science, 2013, Volume 93, Number 2, Page 199
Lei Xing, Wanghui Xu, Bihong Zhou, Yilu Chen, and Zhanglin Lin
Protein Expression and Purification, 2013, Volume 88, Number 2, Page 248
Pei Yang, Fu-Gen Wu, and Zhan Chen
The Journal of Physical Chemistry C, 2013, Volume 117, Number 7, Page 3358
G. J. Mitchell, K. Wiesenfeld, D. C. Nelson, and J. S. Weitz
Journal of The Royal Society Interface, 2013, Volume 10, Number 80, Page 20120892
Kenichi Kuroda and Gregory A. Caputo
Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, Volume 5, Number 1, Page 49
H.C. Korting, C. Schöllmann, M. Stauss-Grabo, and M. Schäfer-Korting
Skin Pharmacology and Physiology, 2012, Volume 25, Number 6, Page 323
Wataru Aoki, Nao Kitahara, Natsuko Miura, Hironobu Morisaka, Kouichi Kuroda, and Mitsuyoshi Ueda
Chemical Biology & Drug Design, 2012, Volume 80, Number 5, Page 725
Veronika Tørfoss, Johan Isaksson, Dominik Ausbacher, Bjørn-Olav Brandsdal, Gøril E. Flaten, Trude Anderssen, Cristiane de A. Cavalcanti-Jacobsen, Martina Havelkova, Leonard T. Nguyen, Hans J. Vogel, and Morten B. Strøm
Journal of Peptide Science, 2012, Volume 18, Number 10, Page 609
Yunchao Ding, Xuemei Liu, Lingzhen Bu, Hongyan Li, and Shicui Zhang
Peptides, 2012, Volume 37, Number 2, Page 309
Letícia Stephan Tavares, João Vitor Rettore, Renata Mendes Freitas, William Farias Porto, Ana Paula do Nascimento Duque, Júnya de Lacorte Singulani, Osmar Nascimento Silva, Michelle de Lima Detoni, Eveline Gomes Vasconcelos, Simoni Campos Dias, Octávio Luiz Franco, and Marcelo de Oliveira Santos
Peptides, 2012, Volume 37, Number 2, Page 294
Dominik Ausbacher, Gunbjørg Svineng, Terkel Hansen, and Morten B. Strøm
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2012, Volume 1818, Number 11, Page 2917
Leonardo Baldassarre, Francesco Pinnen, Catia Cornacchia, Erika Fornasari, Luigina Cellini, Marina Baffoni, and Ivana Cacciatore
Journal of Peptide Science, 2012, Volume 18, Number 9, Page 567
Sarah R. Dennison, Timothy J. Snape, and David A. Phoenix
European Biophysics Journal, 2012, Volume 41, Number 8, Page 687
Claudia U. Hjørringgaard, Brian S. Vad, Vladimir V. Matchkov, Søren B. Nielsen, Thomas Vosegaard, Niels Chr. Nielsen, Daniel E. Otzen, and Troels Skrydstrup
The Journal of Physical Chemistry B, 2012, Volume 116, Number 26, Page 7652
Wataru Aoki, Kouichi Kuroda, and Mitsuyoshi Ueda
Journal of Bioscience and Bioengineering, 2012, Volume 114, Number 4, Page 365
Jian Feng Li, Jie Zhang, Xing Zhou Xu, Yang Yang Han, Xian Wei Cui, Yu Qing Chen, and Shuang Quan Zhang
Amino Acids, 2012, Volume 42, Number 6, Page 2393
Nina Bionda, Maciej Stawikowski, Roma Stawikowska, Maré Cudic, Fabian López-Vallejo, Daniela Treitl, José Medina-Franco, and Predrag Cudic
ChemMedChem, 2012, Volume 7, Number 5, Page 871
Viness Pillay, Angus R. Hibbins, Yahya E. Choonara, Lisa C. du Toit, Pradeep Kumar, and Valence M. K. Ndesendo
International Journal of Peptide Research and Therapeutics, 2012, Volume 18, Number 3, Page 259
Hubert Chapuis, Jiřina Slaninová, Lucie Bednárová, Lenka Monincová, Miloš Buděšínský, and Václav Čeřovský
Amino Acids, 2012, Volume 43, Number 5, Page 2047
Garry Laverty, Sean P. Gorman, and Brendan F. Gilmore
Journal of Biomedical Materials Research Part A, 2012, Volume 100A, Number 7, Page 1803
Anna Kurek, Paulina Nadkowska, Sylwia Pliszka, and Krystyna I. Wolska
Phytomedicine, 2012, Volume 19, Number 6, Page 515
Fang Wang, Luoheng Qin, Christopher J. Pace, Patrick Wong, Ryan Malonis, and Jianmin Gao
ChemBioChem, 2012, Volume 13, Number 1, Page 51
Sergei A. Svarovsky and Maria J. Gonzalez-Moa
ACS Combinatorial Science, 2011, Volume 13, Number 6, Page 634
Sarah R. Dennison, Leslie H.G. Morton, Frederick Harris, and David A. Phoenix
Chemistry and Physics of Lipids, 2008, Volume 151, Number 2, Page 92
Sung-Hee Lee, Seo-Jin Kim, Yoo-Sup Lee, Min-Dong Song, Ick-Hee Kim, and Hyung-Sik Won
Regulatory Peptides, 2011, Volume 166, Number 1-3, Page 36
Lenka Monincová, Jiřina Slaninová, Vladimír Fučík, Oldřich Hovorka, Zdeněk Voburka, Lucie Bednárová, Petr Maloň, Jitka Štokrová, and Václav Čeřovský
Amino Acids, 2012, Volume 43, Number 2, Page 751
David I. Fernandez, Marc-Antoine Sani, John D. Gehman, Kyung-Soo Hahm, and Frances Separovic
European Biophysics Journal, 2011, Volume 40, Number 4, Page 471
K. Ramanathan and Rao Sethumadhavan
Interdisciplinary Sciences: Computational Life Sciences, 2011, Volume 3, Number 3, Page 182
Frederick Harris, Sarah R. Dennison, Jaipaul Singh, and David A. Phoenix
Medicinal Research Reviews, 2013, Volume 33, Number 1, Page 190
Guofeng Ye, Anju Gupta, Robert DeLuca, Keykavous Parang, and Geoffrey D. Bothun
Colloids and Surfaces B: Biointerfaces, 2010, Volume 76, Number 1, Page 76
Michela Bruschi, Giovanna Pirri, Andrea Giuliani, Silvia Fabiole Nicoletto, Izabela Baster, Mariano Andrea Scorciapino, Mariano Casu, and Andrea C. Rinaldi
Peptides, 2010, Volume 31, Number 8, Page 1459
Emilie Duval, Céline Zatylny, Mathieu Laurencin, Michèle Baudy-Floc’h, and Joël Henry
Peptides, 2009, Volume 30, Number 9, Page 1608
Daniela Comegna, Monica Benincasa, Renato Gennaro, Irene Izzo, and Francesco De Riccardis
Bioorganic & Medicinal Chemistry, 2010, Volume 18, Number 5, Page 2010
Sigmund V. Sperstad, Tor Haug, Hans-Matti Blencke, Olaf B. Styrvold, Chun Li, and Klara Stensvåg
Biotechnology Advances, 2011, Volume 29, Number 5, Page 519
Sonia S. Yoon and Jun Sun
Gastroenterology Research and Practice, 2011, Volume 2011, Page 1
John A Robinson
Current Opinion in Chemical Biology, 2011, Volume 15, Number 3, Page 379
Andrea Giuliani and Andrea C. Rinaldi
Cellular and Molecular Life Sciences, 2011, Volume 68, Number 13, Page 2255
S. A. Okorochenkov, G. A. Zheltukhina, and V. E. Nebol’sin
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2011, Volume 5, Number 2, Page 95
David W. Hoskin and Ayyalusamy Ramamoorthy
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2008, Volume 1778, Number 2, Page 357
Hua Pan, Neelesh R. Soman, Paul H. Schlesinger, Gregory M. Lanza, and Samuel A. Wickline
Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, Volume 3, Number 3, Page 318
Hyung-Sik Won, Su-Jin Kang, Wahn-Soo Choi, and Bong-Jin Lee
Molecules and Cells, 2011, Volume 31, Number 1, Page 49
K. Ramanathan, V. Shanthi, R. Rajasekaran, C. Sudandiradoss, C. George Priya Doss, and Rao Sethumadhavan
International Journal of Peptide Research and Therapeutics, 2011, Volume 17, Number 1, Page 31
Jiřina Slaninová, Helena Putnová, Lenka Borovičková, Pavel Šácha, Václav Čeřovský, Lenka Monincová, and Vladimír Fučík
Open Life Sciences, 2011, Volume 6, Number 2
Troels Godballe, Line L. Nilsson, Pernille D. Petersen, and Håvard Jenssen
Chemical Biology & Drug Design, 2011, Volume 77, Number 2, Page 107
Jacek Lipkowski
Physical Chemistry Chemical Physics, 2010, Volume 12, Number 42, Page 13874
Yanhua Su, Kai Zhang, and Hermann J. Schluesener
Archivum Immunologiae et Therapiae Experimentalis, 2010, Volume 58, Number 5, Page 365
S. P. Liu, L. Zhou, R. Lakshminarayanan, and R. W. Beuerman
International Journal of Peptide Research and Therapeutics, 2010, Volume 16, Number 3, Page 199
Krystyna Wolska, Anna Grudniak, Beata Fiecek, Anna Kraczkiewicz-Dowjat, and Anna Kurek
Open Life Sciences, 2010, Volume 5, Number 5
Mohamed Hajji, Kemel Jellouli, Noomen Hmidet, Rafik Balti, Alya Sellami-Kamoun, and Moncef Nasri
Journal of Industrial Microbiology & Biotechnology, 2010, Volume 37, Number 8, Page 805
Lenka Monincová, Miloš Buděšínský, Jiřina Slaninová, Oldřich Hovorka, Josef Cvačka, Zdeněk Voburka, Vladimír Fučík, Lenka Borovičková, Lucie Bednárová, Jakub Straka, and Václav Čeřovský
Amino Acids, 2010, Volume 39, Number 3, Page 763
Wenli Huang, Li Lu, Ximing Shao, Chengkang Tang, and Xiaojun Zhao
Biotechnology Letters, 2010, Volume 32, Number 4, Page 463
Nezha Badi, Loïc Auvray, and Philippe Guégan
Advanced Materials, 2009, Volume 21, Number 40, Page 4054
Analette I. Lopez, Rose Y. Reins, Alison M. McDermott, Barbara W. Trautner, and Chengzhi Cai
Molecular BioSystems, 2009, Volume 5, Number 10, Page 1148
Neelesh R. Soman, Steven L. Baldwin, Grace Hu, Jon N. Marsh, Gregory M. Lanza, John E. Heuser, Jeffrey M. Arbeit, Samuel A. Wickline, and Paul H. Schlesinger
Journal of Clinical Investigation, 2009, Volume 119, Number 9, Page 2830
Václav Čeřovský, Miloš Buděšínský, Oldřich Hovorka, Josef Cvačka, Zdeněk Voburka, Jiřina Slaninová, Lenka Borovičková, Vladimír Fučík, Lucie Bednárová, Ivan Votruba, and Jakub Straka
ChemBioChem, 2009, Volume 10, Number 12, Page 2089
Adriaan Willem Tuin, Dimitrios Konstantinos Palachanis, Annelies Buizert, Gijsbert Marnix Grotenbreg, Emile Spalburg, Albert J. de Neeling, Roos H. Mars-Groenendijk, Daan Noort, Gijsbert A. van der Marel, Herman S. Overkleeft, and Mark Overhand
European Journal of Organic Chemistry, 2009, Volume 2009, Number 25, Page 4231
Giovanna Pirri, Andrea Giuliani, Silvia Nicoletto, Lorena Pizzuto, and Andrea Rinaldi
Open Life Sciences, 2009, Volume 4, Number 3
Ryan W. Davis, Dulce C. Arango, Howland D. T. Jones, Mark H. Van Benthem, David M. Haaland, Susan M. Brozik, and Michael B. Sinclair
Journal of Peptide Science, 2009, Volume 15, Number 8, Page 511
P. C. F. Oyston, M. A. Fox, S. J. Richards, and G. C. Clark
Journal of Medical Microbiology, 2009, Volume 58, Number 8, Page 977
Gabriela Seydlová and Jaroslava Svobodová
Open Medicine, 2008, Volume 3, Number 2
Arnaud Marquette, A. James Mason, and Burkhard Bechinger
Journal of Peptide Science, 2008, Volume 14, Number 4, Page 488
Kristy M. DiVittorio, W. Matthew Leevy, Edward J. O'Neil, James R. Johnson, Sergei Vakulenko, Joshua D. Morris, Kristine D. Rosek, Nathan Serazin, Sarah Hilkert, Scott Hurley, Manuel Marquez, and Bradley D. Smith
ChemBioChem, 2008, Volume 9, Number 2, Page 286

Comments (0)

Please log in or register to comment.
Log in