Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year


IMPACT FACTOR 2017: 0.764
5-year IMPACT FACTOR: 0.787

CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.271
Source Normalized Impact per Paper (SNIP) 2017: 0.545

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 2, Issue 2

Issues

Volume 10 (2015)

Evolutionary mechanisms of circadian clocks

Guillermo Rodrigo / Javier Carrera / Alfonso Jaramillo
Published Online: 2007-06-01 | DOI: https://doi.org/10.2478/s11535-007-0016-z

Abstract

An intriguing question in biology is to know how circadian molecular networks could have evolved their particular topologies to adjust to a daily period. We analyze the mechanism of the evolution of such networks by using a computational design strategy that allows for the generation of synthetic networks with a targeted 24 hours oscillation. We have performed a systematic analysis of all possible two-gene network topologies based on a core activator-repressor frequently found in circadian mechanisms. We have considered transcriptional and post-translational regulations to implement this core. We have applied our analysis to both, eukaryotic and prokaryotic circadian machinery. Finally, we conjecture a possible mechanism for the evolution of circadian clocks.

Keywords: Circadian clocks; systems biology; biological networks

  • [1] J.C. Dunlap: “Molecular bases for circadian clocks”, Cell, Vol. 96, (1999), pp. 271–290. http://dx.doi.org/10.1016/S0092-8674(00)80566-8CrossrefGoogle Scholar

  • [2] C.F. Ehret and J.J. Wille: “Photobiology of microorganisms”, Halldal, P. (Ed.), Wiley, New York (USA), 1970, pp. 369–416. Google Scholar

  • [3] C.H. Johnson, S.S. Golden, M. Ishiura and T. Kondo: “Circadian clocks in prokaryotes”, Mol. Microbiol., Vol. 21, (1996), pp. 5–11. http://dx.doi.org/10.1046/j.1365-2958.1996.00613.xCrossrefGoogle Scholar

  • [4] M.W. Young and S.A. Kay: “Time zones: a comparative genetics of circadian clocks”, Nat. Rev. Genet., Vol. 2, (2001), pp. 702–715. http://dx.doi.org/10.1038/35088576CrossrefGoogle Scholar

  • [5] J.J. Loros and J.C. Dunlap: “Genetic and molecular analysis of circadian rhythms in Neurospora”, Annu. Rev. Physiol., Vol. 63, (2001), pp. 757–794. http://dx.doi.org/10.1146/annurev.physiol.63.1.757CrossrefGoogle Scholar

  • [6] T. Mori and C.H. Johnson: “Circadian programming in cyanobacteria”, Semin. Cell Dev. Biol., Vol. 12, (2001), pp. 271–278. http://dx.doi.org/10.1006/scdb.2001.0254CrossrefGoogle Scholar

  • [7] L.C. Roden and I.A. Carre: “The molecular genetics of circadian rhythms in Arabidopsis”, Semin. Cell Dev. Biol., Vol. 12, (2001), pp. 305–315. http://dx.doi.org/10.1006/scdb.2001.0258CrossrefGoogle Scholar

  • [8] S. Reppert and D. Weaver: “Coordination of circadian timing in mammals”, Nature, Vol. 418, (2002), pp. 935–941. http://dx.doi.org/10.1038/nature00965CrossrefGoogle Scholar

  • [9] E. Herzog, J. Takahashi and G. Block: “Clock controls circadian period in isolated suprachiasmatic nucleus neurons”, Nature Neurosci., Vol. 1, (1998), pp. 708–713. http://dx.doi.org/10.1038/3708CrossrefGoogle Scholar

  • [10] A. Millar: “Molecular intrigue between phototransduction and the circadian clock”, Ann. Bot., Vol. 81, (1998), pp. 581–587. http://dx.doi.org/10.1006/anbo.1998.0595CrossrefGoogle Scholar

  • [11] M.B. Elowitz and S. Leibler: “A synthetic oscillatory network of transcriptional regulators”, Nature, Vol. 403, (2000), pp. 335–338. http://dx.doi.org/10.1038/35002125CrossrefGoogle Scholar

  • [12] T.S. Gardner, C.R. Cantor and J.J. Collins: “Construction of a genetic toggle switch in E. Coli”, Nature, Vol. 403, (2000), pp. 339–342. http://dx.doi.org/10.1038/35002131CrossrefGoogle Scholar

  • [13] A. Jaramillo, L. Wernisch, S. Hery and S.J. Wodak: “Folding free energy function selects native-like protein sequences in the core but not on the surface”, Proc. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 13554–13559. http://dx.doi.org/10.1073/pnas.212068599CrossrefGoogle Scholar

  • [14] S. Basu, Y. Gerchman, C.H. Collins, F.H. Arnald and R. Weiss: “A synthetic multicellular system for programmed pattern formation”, Nature, Vol. 434, (2005), pp. 1130–1134. http://dx.doi.org/10.1038/nature03461CrossrefGoogle Scholar

  • [15] J. Hasty, D. McMillen and J.J. Collins: “Engineered gene circuits”, Nature, Vol. 420, (2002), pp. 224–230. http://dx.doi.org/10.1038/nature01257CrossrefGoogle Scholar

  • [16] P. Francois and V. Hakim: “Design of genetic networks with specified functions by evolution in silico”, Proc. Natl. Acad. Sci. USA, Vol. 101, (2004), pp. 580–585. http://dx.doi.org/10.1073/pnas.0304532101CrossrefGoogle Scholar

  • [17] M.R. Atkinson, M.A. Savageau, J.T. Myers and A.J. Ninfa: “Development of genetic circuit exhibiting toggle switch or oscillatory behavior in Escherichia Coli”, Cell, Vol. 113, (2003), pp. 597–607. http://dx.doi.org/10.1016/S0092-8674(03)00346-5CrossrefGoogle Scholar

  • [18] N. Barkai and S. Liebler: “Circadian clocks limited by noise”, Nature, Vol. 403, (1999), pp. 267–268. Google Scholar

  • [19] P. Francois and V. Hakim: “Core genetic module: the mixed feedback loop”, Phys. Rev. E, Vol. 72, (2005), art. 31908. Google Scholar

  • [20] N. Monk: “Oscillatory expression of Hes1, p53, and NF-kB driven by transcriptional time delays”, Curr. Biol., Vol. 13, (2003), pp. 1409–1413. http://dx.doi.org/10.1016/S0960-9822(03)00494-9CrossrefGoogle Scholar

  • [21] H. El-Samad, M. Khammash, L. Petzold and D. Gillespie: “Stochastic modelling of gene regulatory networks”, Int. J. Robust Nonlinear Control, Vol. 15, (2005), pp. 691–711. http://dx.doi.org/10.1002/rnc.1018CrossrefGoogle Scholar

  • [22] D. Gillespie: “A general method for numerically simulating the stochastic time evolution of coupled chemical reactions”, J. Comput. Phys., Vol. 22, (1976), pp. 403–434. http://dx.doi.org/10.1016/0021-9991(76)90041-3CrossrefGoogle Scholar

  • [23] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi: “Optimization by simulated annealing”, Science, Vol. 220, (1983), pp. 671–680. http://dx.doi.org/10.1126/science.220.4598.671CrossrefGoogle Scholar

  • [24] V. Chickarmane, S.R. Paladugu, F. Bergmann and H.M. Sauro: “Bifurcation discovery tool”, Bioinformatics, Vol. 21, (2005), pp. 3688–3690. http://dx.doi.org/10.1093/bioinformatics/bti603CrossrefGoogle Scholar

  • [25] D.B. Forger and C.S. Peskin: “A detailed predictive model of the mammalian circadian clock”, Proc. Natl. Acad. Sci. USA, Vol. 100, (2003), pp. 14806–14811. http://dx.doi.org/10.1073/pnas.2036281100CrossrefGoogle Scholar

  • [26] J.C. Leloup and A. Goldbeter: “Toward a detailed computational model for the mammalian circadian clock”, Proc. Natl. Acad. Sci. USA, Vol. 100, (2003), pp. 7051–7056. http://dx.doi.org/10.1073/pnas.1132112100CrossrefGoogle Scholar

  • [27] Y. Xu, T. Mori and C.H. Johnson: “Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC”, EMBO J., Vol. 22, (2003), pp. 2117–2126. http://dx.doi.org/10.1093/emboj/cdg168CrossrefGoogle Scholar

  • [28] D. Gonze, J. Halloy and A. Goldbeter: “Robustness of circadian rhythms with respect to molecular noise”, Proc. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 673–678. http://dx.doi.org/10.1073/pnas.022628299CrossrefGoogle Scholar

  • [29] W.P. Dayawansa and C.F. Martin: “Stability of phase locked oscillations in the circadian clock”, Proc. Am. Control Conf., Vol. Arlington (USA), (2001), pp. 252–256. CrossrefGoogle Scholar

  • [30] J.M.G. Vilar, H.Y. Kueh, N. Barkai and S. Leibler: “Mechanisms of noise-resistance in genetic oscillators”, Proc. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 5988–5992. http://dx.doi.org/10.1073/pnas.092133899CrossrefGoogle Scholar

  • [31] U. Albretch: “Regulation of mammalian circadian clock genes”, J. Appl. Physiol., Vol. 92, (2002), pp. 1348–1355. Google Scholar

  • [32] S. Golden, M. Ishiura, C.H. Johnson and T. Kondo: “Cyanobacterial circadian rhythms”, Annu. Rev. Plant Physiol. Plant Mol. Biol., Vol. 48, (1997), pp. 327–354. http://dx.doi.org/10.1146/annurev.arplant.48.1.327CrossrefGoogle Scholar

  • [33] M. Ishiura, S. Kutsuna, S. Aoki, H. Iwasaki, C.R. Andersson, A. Tanabe, S.S. Golden, C.H. Johnson and T. Kondo: “Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria”, Science, Vol. 281, (1998), pp. 1519–1523. http://dx.doi.org/10.1126/science.281.5382.1519CrossrefGoogle Scholar

  • [34] B.A. Whitton: “Survival and dormancy of microorganisms”, Hennis, Y. (Ed.), Wiley, New York (USA), 1987, pp. 109–167. Google Scholar

  • [35] E. Emberly and N.S. Wingreen: “Hourglass model for a protein-based circadian oscillator”, Phys. Rev. Lett., Vol. 96, (2006), pp. 38303 1–4. Google Scholar

  • [36] H. Iwasaki, T. Nishiwaki, Y. Kitayama, M. Nakajima and T. Kondo: “KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria”, Proc. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 15788–15793. http://dx.doi.org/10.1073/pnas.222467299CrossrefGoogle Scholar

  • [37] S. Ohno: “Evolution by Gene Duplication”, (Ed.), Springer, Berlin (Germany), 1970, pp. 1–160. Google Scholar

  • [38] D.B. Forger and C.S. Peskin: “Stochastic simulation of the mammalian circadian clock”, Proc. Natl. Acad. Sci. USA, Vol. 102, (2005), pp. 321–324. http://dx.doi.org/10.1073/pnas.0408465102CrossrefGoogle Scholar

About the article

Published Online: 2007-06-01

Published in Print: 2007-06-01


Citation Information: Open Life Sciences, Volume 2, Issue 2, Pages 233–253, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-007-0016-z.

Export Citation

© 2007 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. van Dorp, B. Lannoo, and E. Carlon
Physical Review E, 2013, Volume 88, Number 1
[2]
Guillermo Rodrigo, Javier Carrera, and Alfonso Jaramillo
Biochimie, 2008, Volume 90, Number 6, Page 888
[3]
I. Tagkopoulos, Y.-C. Liu, and S. Tavazoie
Science, 2008, Volume 320, Number 5881, Page 1313

Comments (0)

Please log in or register to comment.
Log in