Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 3, Issue 1

Issues

Volume 10 (2015)

Degradation of naphthalene by thermophilic bacteria via a pathway, through protocatechuic acid

Audrius Bubinas
  • Department of Plant Physiology and Microbiology, Faculty of Natural Sciences, Vilnius University, LT-03101, Vilnius, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gražina Giedraitytė
  • Department of Plant Physiology and Microbiology, Faculty of Natural Sciences, Vilnius University, LT-03101, Vilnius, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lilija Kalėdienė
  • Department of Plant Physiology and Microbiology, Faculty of Natural Sciences, Vilnius University, LT-03101, Vilnius, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ona Nivinskiene / Rita Butkiene
Published Online: 2008-03-01 | DOI: https://doi.org/10.2478/s11535-007-0042-x

Abstract

A number of thermophilic bacteria capable of utilizing naphthalene as a sole source of carbon were isolated from a high-temperature oilfield in Lithuania. These isolates were able to utilize several other aromatic compounds, such as anthracene, benzene, phenol, benzene-1, 3-diol, protocatechuic acid as well. Thermophilic isolate G27 ascribed to Geobacillus genus was found to have a high aromatic compound degrading capacity. Spectrophotometric determination of enzyme activities in cell-free extracts revealed that the last aromatic ring fission enzyme in naphthalene biotransformation by Geobacillus sp. G27 was inducible via protocatechuate 3, 4-dioxygenase; no protocatechuate 4, 5-dioxygenase, protocatechuate 2, 3-dioxygenase activities were detected. Intermediates such as o-phthalic and protocatechuic acids detected in culture supernatant confirmed that the metabolism of naphthalene by Geobacillus sp. G27 can proceed through protocatechuic acid via ortho-cleavage pathway and thus differs from the pathways known for mesophilic bacteria.

Keywords: Thermophilic bacteria; Geobacillus; Naphthalene; Dioxygenases

  • [1] Smith M.R., The biodegradation of aromatic hydrocarbons by bacteria, Biodegradation, 1990, 1, 191–206 http://dx.doi.org/10.1007/BF00058836CrossrefGoogle Scholar

  • [2] Cerniglia C.E., Biodegradation of polycyclic aromatic hydrocarbons, Biodegradation, 1992, 3, 351–368 http://dx.doi.org/10.1007/BF00129093CrossrefGoogle Scholar

  • [3] Mishra V., Lal R., Enzymes and operons mediating xenobiotic degradation in bacteria, Crit. Rev. Microbiol., 2001, 27, 133–166 http://dx.doi.org/10.1080/20014091096729CrossrefGoogle Scholar

  • [4] Kang H., Hwang S.Y., Kim Y.M., Kim E., Kim Y.-S., Kim S.-K., et. al., Degradation of phenanthrene and naphthalene by a Burkholderia species strain, Can. J. Microbiol., 2003, 49, 139–144 http://dx.doi.org/10.1139/w03-009CrossrefGoogle Scholar

  • [5] Adams D., Ribbons D.W., The metabolism of aromatic compounds by thermophilic bacilli, Appl. Biochem. Biotechnol., 1988, 17, 231–244 http://dx.doi.org/10.1007/BF02779160CrossrefGoogle Scholar

  • [6] Mutzel A., Reinscheid U., Atranikian G., Muller R., Isolation and characterization of a thermophilic Bacillus strain, that degrades phenol and cresols as sole carbon source at 70°C, Appl. Microbiol. Biotechnol., 1996, 46, 593–596 http://dx.doi.org/10.1007/s002530050866CrossrefGoogle Scholar

  • [7] Muller R., Antranikian G., Maloney S., Sharp R., Thermophilic degradation of environmental pollutants, Adv. Biochem. Eng. Biotechnol., 1998, 61, 155–169 Google Scholar

  • [8] Milo R.E., Duffner F.M., Muller R., Catechol 2,3-dioxygenase from the thermophilic, phenol-degrading Bacillus thermoleovorans strain A2 has unexpected low thermal stability, Extremophiles, 1999, 3, 185–190 http://dx.doi.org/10.1007/s007920050115CrossrefGoogle Scholar

  • [9] Annweiler E., Richnow H.H., Hebenbrock S., Antranikian G., Garms C., Francke W., et. al., Naphthalene degradation and incorporation of naphthalene derived carbon into the biomass by the thermophilic Bacillus thermoleovorans, Appl. Environ. Microbiol., 2000, 66, 518–523 http://dx.doi.org/10.1128/AEM.66.2.518-523.2000CrossrefGoogle Scholar

  • [10] Meynell G.G., Meynell E., Theory and Practice in Experimental Bacteriology, University Press, Cambridge, 1965 Google Scholar

  • [11] Adkins J.P., Cornell L.A., Tanner R.S., Microbial composition of carbonate petroleum reservoir fluid, Geomicrobiol. J., 1992, 10, 87–97 http://dx.doi.org/10.1080/01490459209377909CrossrefGoogle Scholar

  • [12] Claus D., Berceley R.C.W., Genus Bacillus Cohn 1872, In: Sneath P.H.A., Mair N.S., Sharpr M.E., Holt J.G. (Eds.), Bergey’s Manual of Systematic Bacteriology, Baltimore, Williams & Wilkins, 1986 Google Scholar

  • [13] Ronimus R.S., Parker L.E., Morgan H.W., The utilization of RAPD-PCR for identifying thermophilic and mesophilic Bacillus species, FEMS Microbiol. Lett., 1997, 147, 75–79 http://dx.doi.org/10.1111/j.1574-6968.1997.tb10223.xCrossrefGoogle Scholar

  • [14] Sambrook J., Fritsch E.F., Maniatis T., Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, Laboratory Press, New York, 1989 Google Scholar

  • [15] Studholme D.J., Jackson R.A., Leak D.J., Phylogenetic analysis of transformable strains of thermophilic Bacillus species, FEMS Microbiol. Lett., 1999, 172, 85–90 http://dx.doi.org/10.1111/j.1574-6968.1999.tb13454.xCrossrefGoogle Scholar

  • [16] Cashion P., Holder-Franklin M.A., McCully J., Franklin M., A rapid method for the base ratio determination of bacterial DNA, Anal. Biochem., 1977, 81, 461–466 http://dx.doi.org/10.1016/0003-2697(77)90720-5CrossrefGoogle Scholar

  • [17] Mesbah M., Premachandran U., Whitman W., Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography, International, J. System. Bacteriol., 1989, 39, 159–167 Google Scholar

  • [18] Bradford M.M., A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding, Anal. Biochem., 1976, 72, 248–254 http://dx.doi.org/10.1016/0003-2697(76)90527-3CrossrefGoogle Scholar

  • [19] Crawford R.L., Novel pathway for degradation of protocatechuic acid in Bacillus species, J. Bacteriol, 1975, 121, 531–536 Google Scholar

  • [20] Iwagami S.G., Yang K., Davies J., Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065, Appl. Environ. Microbiol., 2000, 66, 1499–1508. http://dx.doi.org/10.1128/AEM.66.4.1499-1508.2000CrossrefGoogle Scholar

  • [21] Ono K., Nozaki M., Hayaishi O., Purification and some properties of protocatechuate 4,5-dioxygenase, Biochim. Biophys. Acta, 1970, 200, 224–238 Google Scholar

  • [22] Doddamani H.P., Niunekar H.Z., Biodegradation of phenanthrene by a Bacillus species, Curr. Microbiol., 2000, 41, 11–14 http://dx.doi.org/10.1007/s002840010083CrossrefGoogle Scholar

  • [23] Bask A., Nayak M.K., Chakraborti A.K., Chemoselective o-metylation of phenols under non-aquenous condition, Tetrahedron. Lett., 1998, 39, 4883–4886 http://dx.doi.org/10.1016/S0040-4039(98)00885-5CrossrefGoogle Scholar

  • [24] Nazina T.N., Tourova T.P., Poltaraus A.B., Novikova E.V., Ivanova A.E., Grigoryan A.A., et. al., Physiological and phylogenetic diversity of thermophilic spore-forming hydrocarbon-oxidizing bacteria from oil fields, Microbiol., (English translation of Mikrobiologiya), 2000, 69, 96–102 Google Scholar

  • [25] Nazina T.N., Tourova T.P., Poltaraus A.B., Novikova E.V., Grigoryan A.A., Ivanova A.E., et. al., Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. Nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearotermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans, Int. J. Syst. Evol. Microbiol., 2001, 51, 433–446 Google Scholar

  • [26] Davies J.L., Evans W.C., Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fision mechanism, Biochem. J., 1964, 91, 251–261 Google Scholar

  • [27] Eaton R.W., Chapman P.J., Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions, J. Bacteriol., 1992, 174, 7542–7554 Google Scholar

  • [28] Grifoll M., Selifanov S.A., Chapman P.J., Evidence for a novel pathway in the degradation of fluorine by Pseudomonas sp. strain 2065, Appl. Environ. Microbiol., 1994, 60, 2438–2449 Google Scholar

  • [29] Cerniglia C.E., Freeman J.P., Evans F.E., Evidence for an arene oxide-NIH shift pathway in the transformation of naphthalene to 1-naphthol by Bacillus cereus, Arch. Microbiol, 1984, 138, 283–286 http://dx.doi.org/10.1007/BF00410891CrossrefGoogle Scholar

  • [30] Kelley L., Freeman J.P., Cerniglia C.E., Identification of metabolites from degradation of naphthalene by a Mycobacterium sp., Biodegradation, 1990, 1, 283–290 http://dx.doi.org/10.1007/BF00119765CrossrefGoogle Scholar

  • [31] Samanta S.K., Chakraborti A.K., Jain R.K., Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol, Appl. Microbiol. Biotechnol., 1999, 53, 98–107 http://dx.doi.org/10.1007/s002530051621CrossrefGoogle Scholar

  • [32] Herwijnen R.V., Springael D., Slot P., Govers H.A.J., Parsons J.R., Degradation of anthracene by Mycobacterium sp. strain LB501T proceeds via a novel pathway, through o-phthalic acid, Appl. Environ. Microbiol., 2003, 69, 186–190 http://dx.doi.org/10.1128/AEM.69.1.186-190.2003CrossrefGoogle Scholar

About the article

Published Online: 2008-03-01

Published in Print: 2008-03-01


Citation Information: Open Life Sciences, Volume 3, Issue 1, Pages 61–68, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-007-0042-x.

Export Citation

© 2008 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M.A.M. Abo-State, B.Y. Riad, A.A. Bakr, and M.F. Abdel Aziz
Journal of Radiation Research and Applied Sciences, 2018, Volume 11, Number 1, Page 1
[2]
Alexis Nzila
International Journal of Environmental Research and Public Health, 2018, Volume 15, Number 12, Page 2782

Comments (0)

Please log in or register to comment.
Log in