Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 3, Issue 1

Issues

Volume 10 (2015)

Genome size microscale divergence of Cyclamen persicum in Evolution Canyon, Israel

Tomáš Pavlíček / Petr Bureš / Lucie Horová / Olga Raskina / Eviatar Nevo
Published Online: 2008-03-01 | DOI: https://doi.org/10.2478/s11535-007-0043-9

Abstract

Using DAPI flow cytometry, we examined genome size divergence of the Persian violet, Cyclamen persicum (Primulaceae) (2n=48) on close opposite slopes of Evolution Canyon (EC), Mt. Carmel, Israel. The range of genome size variation detected among measured cyclamens was 6.41% in relation to the smallest measured DNA content. Our data on C. persicum at EC showed that local variability in the 2C-value exists. Significantly less DNA was recorded in plants growing in one station of the African savannah-like south-facing slope (AS) but not in the remaining two stations of the same slope. We were not able to reject the null hypothesis that there are no significant interslope differences in the genome size between the temperate European garrigue-like north-facing slope (ES) and the drier AS. In spite of the nonsignificant interslope trend for the higher genome size in C. persicum, the data-fusion (meta-analysis) test using correlations between C-values in C. persicum, and earlier studied carob tree (Ceratonia siliqua), trifoil (Lotus peregrinus) and a beetle (Oryzaephilus surinamensis) and their distribution along the aridity gradient indicates a positive relationship between drought and genome size at the microsite.

Keywords: Cyclamen persicum; 2C-value; DNA; Flow cytometry; Genome size; Evolution Canyon

  • [1] Nevo E., Asian, African and European biota meet at “Evolution Canyon” Israel: Local test of global biodiversity and genetic diversity patterns, Proc. Roy. Soc. Lond. (Series B)., 1995, 262, 149–155. http://dx.doi.org/10.1098/rspb.1995.0189CrossrefGoogle Scholar

  • [2] Nevo E., Evolution in action across phylogeny caused by microclimatic stresses at “Evolution Canyon”, Theor. Pop. Biol., 1997, 52, 231–243 http://dx.doi.org/10.1006/tpbi.1997.1330CrossrefGoogle Scholar

  • [3] Nevo E., Evolution of genome-phenome diversity under environmental stress, Proc. Nat. Acad. Sci., 2001, 98, 6233–6240 http://dx.doi.org/10.1073/pnas.101109298CrossrefGoogle Scholar

  • [4] Bureš P., Pavlíček T., Horová L., Nevo E., Microgeographic genome size differentiation of the carob tree, Ceratonia siliqua, at “Evolution Canyon”, Israel, Ann. Bot., 2004, 93, 529–535 http://dx.doi.org/10.1093/aob/mch074CrossrefGoogle Scholar

  • [5] Kalendar R., Tanskanen J., Immonen S., Nevo E., Schulman H., Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence, Proc. Nat. Acad. Sci., 2000, 97, 6603–6607 http://dx.doi.org/10.1073/pnas.110587497Google Scholar

  • [6] Vicient C.M., Suoniemi A., Anamthawat-Jonsson K., Tanskanen J., Beharav A., Nevo E., et al., Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum, The Plant Cell, 1999, 11, 1769–1784 http://dx.doi.org/10.2307/3871053Google Scholar

  • [7] Nevo E., Fragman O., Dafni A., Beiles A., Biodiversity and interslope divergence of vascular plants caused by microclimatic differences at “Evolution Canyon”, Lower Nahal Oren, Mount Carmel, Israel, Isr. J. Plant Sci., 1999, 47, 49–59 CrossrefGoogle Scholar

  • [8] Karcz Y., The structure of the northern Carmel, Bull. Res. Counc. Isr., 1959, 8G, 119–130 Google Scholar

  • [9] Atlas of Israel, Amsterdam — Ministry of Labour, Various paginations, 1970 Google Scholar

  • [10] Nevo E., Travleev A., Belova N.A., Tsatskin A., Pavlíček T., Kulik A.F., et al., idaphic interslope and valley bottom divergence at “Evolution Canyon”, Lower Nahal Oren, Mount Carmel, Israel, Catena, 1998, 340, 241–254 Google Scholar

  • [11] Ayyad M., A study of solar radiation on sloping surfaces at Alexandria, United Arab Rep. J. Bot., 1971, 14, 65–72 http://dx.doi.org/10.1515/botm.1971.14.1.65CrossrefGoogle Scholar

  • [12] Pavlíček T., Sharon D., Kravchenko V., Saaroni H., Nevo E., Microclimatic interslope differences underlying biodiversity contrasts in “Evolution Canyon”, Mt. Carmel, Israel, J. Earth Sci., 2003, 52, 1–9 http://dx.doi.org/10.1560/QD0A-9T22-4FGL-FGH6CrossrefGoogle Scholar

  • [13] Al-Eisawi D.M.H., Field Guide to Wild Flowers of Jordan and Neigbouring Countries, Jordan Press Foundation, Amman, 1998 Google Scholar

  • [14] Feinbrun-Dothan N., Flora Palaestina, Israel Acad. Sci. & Humanities, Jerusalem, 1978 Google Scholar

  • [15] Jahn R., Schönfelder P., Exkursionsflora für Kreta, E. Ulmer, Stuttgart, 1995 Google Scholar

  • [16] Meikle R.D., Cyclamen L. In: P.H. Davis (Ed.), Flora of Turkey and the East Aegean Islands, Univ. Press, Edinburgh, 1978 Google Scholar

  • [17] Polunin O., Huxley A., Flowers of the Mediterranean, Chato and Windus, London, 1978 Google Scholar

  • [18] Sfikas G., Wild Flowers of Cyprus, Efstathiadis Group, Athens, 2001 Google Scholar

  • [19] Ishizaka H., Cytogenetic studies in Cyclamen persicum, C. graecum (Primulaceae) and their hybrids, Plant Syst. Evol., 2003, 239, 1–14 http://dx.doi.org/10.1007/s00606-002-0261-6CrossrefGoogle Scholar

  • [20] Schwarz O., Monographie der Gattung Cyclamen L. Teil II., Feddes Repertorium, 1964, 69, 73–103 Google Scholar

  • [21] Lepper L., Nachtrag zur Zytologie von Cyclamen L., Wissenschaftliche Zeitschrift der Friedrich-Schiller-Universität, 1975, 24, 429–436 Google Scholar

  • [22] Greilhuber J., Karyotype structure and evolution in Cyclamen L. subg. Psilanthum Schwez. (Primulaceae), Flora, 1989, 183, 103–113 Google Scholar

  • [23] Bennett S.T., Grimshaw J.M., Cytological studies in Cyclamen subg. Cyclamen (Primulaceae), Pl. Syst. Evol., 1991, 176, 135–143 http://dx.doi.org/10.1007/BF00937904CrossrefGoogle Scholar

  • [24] Buchmann S.L., Buzz pollination in Angiosperms. In.: C.E. Jones, R.J. Little (Eds.), Handbook of Experimental Pollination Biology, Van Nostrand Reinholdt, New York, 1983 Google Scholar

  • [25] Schwartz-Tzachor R., Dafni A., Potts S.G., Elsikowitch D., An ancient pollinator of a contemporary plant (Cyclamen persicum), When pollination syndromes break down, Flora, 2006, 201, 370–373 Google Scholar

  • [26] DeBussche M., Garnier E., Thompson J.D., Exploring the causes of variation in phenology and morphology in Mediterranean geophytes: a genus-wide study of Cyclamen, Bot. J. Linnean Soc., 2004, 145, 469–484 http://dx.doi.org/10.1111/j.1095-8339.2004.00298.xCrossrefGoogle Scholar

  • [27] Pijnacker L.P., Ferwerda M.A., Giemsa C-banding of potato chromosomes, Can. J. Gen. Cyt., 1984, 26, 415–419 Google Scholar

  • [28] Raskina O., Belyayev A., Nevo E., Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch., Chrom. Res., 2004, 12, 153–161 http://dx.doi.org/10.1023/B:CHRO.0000013168.61359.43CrossrefGoogle Scholar

  • [29] Schweizer D., Simultaneous fluorescent staining of R-bands and specific heterochromatic regions (DA-DAPI bands) in human chromosomes, Cytogen. Cell Gen., 1980, 27, 190–193 CrossrefGoogle Scholar

  • [30] Otto F., DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA, Methods Cell Biol., 1990, 33, 105–110 http://dx.doi.org/10.1016/S0091-679X(08)60516-6CrossrefGoogle Scholar

  • [31] Doležel J., Göhde W., Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry, Cytometry, 1995, 19, 103–106 http://dx.doi.org/10.1002/cyto.990190203CrossrefGoogle Scholar

  • [32] Doležel J., Doleželová M., Novák F.J., Flow cytometric estimation of nuclear DNA amount in diploid bananas Musa acuminata and M. balbisiana, Biol. Plant., 1994, 36, 351–357 CrossrefGoogle Scholar

  • [33] Fischer R.A., Statistical Methods for Research Workers. 12th edition. Oliver & Boyd, Edinburgh, 1954 Google Scholar

  • [34] Price H.J., Hodnett G., Johnston J.S., Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence., Ann. Bot., 2000, 86, 929–934 http://dx.doi.org/10.1006/anbo.2000.1255CrossrefGoogle Scholar

  • [35] Castro-Jimenez Y., Newton R.J., Price H.J., Halliwell R.S., Drought stress responses of microseris species differing in nuclear DNA content, Am. J. Bot., 1989, 76, 789–795 http://dx.doi.org/10.2307/2444535CrossrefGoogle Scholar

  • [36] Gasmanová N., Lebeda A., Doležalová I., Cohen T., Pavlíček T., Fahima T., et al., Genome size variation of Lotus peregrinus at Evolution Canyon I microsite, lower Nahal Oren, Mt. Carmel, Israel. Acta Biol. Cracoviensia, 2007, 49, 39–46 Google Scholar

  • [37] Wakamiya I., Price H.J., Messina M.G., Newton R.J., Pine genome size diversity and water relations, Physiol. Plant., 1996, 96, 13–20 http://dx.doi.org/10.1111/j.1399-3054.1996.tb00177.xCrossrefGoogle Scholar

  • [38] Wakamiya I., Newton R.J., Johnston J.S., Price H.J., Genome size and environmental factors in Pinus, Am. J. Bot., 1993, 80, 1235–1241 http://dx.doi.org/10.2307/2445706CrossrefGoogle Scholar

  • [39] Rayburn A.L., Genome size variation in Southwestern United States Indian maize adapted to various altitudes, Evol. Trends in Plants, 1990, 4, 53–57 Google Scholar

  • [40] Creber H.M.C., Davies M.S., Francis D., Walker H.D., Variation in DNA C-value in natural populations of Dactylis glomerata, New Phytol., 1994, 128, 555–561 http://dx.doi.org/10.1111/j.1469-8137.1994.tb03001.xCrossrefGoogle Scholar

  • [41] Reeves G., Francis D., Davies M.S., Rogers H.J., Hodkinson T.R., Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata, Ann. Bot., (Supplement A), 1998, 82, 99–105 http://dx.doi.org/10.1006/anbo.1998.0751CrossrefGoogle Scholar

  • [42] Šmarda P., Bureš P., Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels, Ann. Bot., 2006, 98, 665–678 http://dx.doi.org/10.1093/aob/mcl150CrossrefGoogle Scholar

  • [43] Emmons S.W., Yesner L., High-frequency excision of transposable element Tc1 in the nematode Caenorhabditis elegans is limited to somatic cells, Cell, 1984, 36, 599–605 http://dx.doi.org/10.1016/0092-8674(84)90339-8Google Scholar

  • [44] Woodruff R.C., Thompson J.N., Barker J.S.F., Huai H., Transposable DNA elements and life history traits: II. Transposition of P DNA element in somatic cells reduce fitness, mating activity, and locomotion of Drosophila melanogaster, Genetica, 1999, 107, 261–269 http://dx.doi.org/10.1023/A:1003957227608CrossrefGoogle Scholar

  • [45] Cullis C.A., DNA rearrangements in response to environmental stress, Adv. Gen., 1990, 28, 73–97 CrossrefGoogle Scholar

  • [46] Blundy K.S., Cullis C.A., Hepburn A.G., Ribosomal DNA methylation in a flax genotroph and a crown gall tumor, Plant Mol. Biol., 1987, 8, 217–225 http://dx.doi.org/10.1007/BF00015030CrossrefGoogle Scholar

  • [47] Quemada H., Roth E.J., Lark K.G., Changes in methylation of tissue cultured soybean cells detected by digestion with the restriction enzymes Hpall and Mspl, Plant Cell Rep., 1987, 6, 63–66 http://dx.doi.org/10.1007/BF00269741CrossrefGoogle Scholar

  • [48] Zheng K.L., Castiglione S., Biasini M.G., Biroli A., Morandi C., Sala F., Nuclear DNA amplification in cultured cells of Oryza sativa, Theor. Appl. Gen., 1987, 74, 65–70 http://dx.doi.org/10.1007/BF00290085CrossrefGoogle Scholar

  • [49] Bennett M.D., Intraspecific variation in DNA amount and the nucleotypic dimension in plant genetics, In: Freeling M. (Ed.), Plant Genetics, Alan R. Liss, New York, 1985, 283–302 Google Scholar

About the article

Published Online: 2008-03-01

Published in Print: 2008-03-01


Citation Information: Open Life Sciences, Volume 3, Issue 1, Pages 83–90, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-007-0043-9.

Export Citation

© 2008 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[3]
Kamal Sharaf, Petr Bureš, Lucie Horová, Tomáš Pavlíček, and Eviatar Nevo
Zoology in the Middle East, 2008, Volume 45, Number 1, Page 79
[4]
Neda Jalali, Roohangiz Naderi, Ali Shahi-Gharahlar, and Jaime A. Teixeira da Silva
Scientia Horticulturae, 2012, Volume 137, Page 11
[5]
Hiroshi Ishizaka
Plant Biotechnology, 2008, Volume 25, Number 6, Page 511

Comments (0)

Please log in or register to comment.
Log in