Jump to ContentJump to Main Navigation
Show Summary Details

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR increased in 2015: 0.814
5-year IMPACT FACTOR: 0.870

SCImago Journal Rank (SJR) 2015: 0.362
Source Normalized Impact per Paper (SNIP) 2015: 0.538
Impact per Publication (IPP) 2015: 0.929

Open Access
See all formats and pricing
Volume 3, Issue 1 (Mar 2008)


“Decoding the Dots”: The ImageStream system (ISS) as a novel and powerful tool for flow cytometric analysis

Ewa Zuba-Surma
  • Stem Cell Biology Institute, University of Louisville, Louisville, KY, 40202, USA
  • Email:
/ Magdalena Kucia
  • Stem Cell Biology Institute, University of Louisville, Louisville, KY, 40202, USA
  • Email:
/ Mariusz Ratajczak
  • Stem Cell Biology Institute, University of Louisville, Louisville, KY, 40202, USA
  • Department of Physiopathology, Pomeranian Medical University, 70-111, Szczecin, Poland
  • Email:
Published Online: 2008-03-01 | DOI: https://doi.org/10.2478/s11535-007-0044-8


The aim of this article is to provide a brief review of the ImageStream system (ISS). The ISS technology was developed as a novel method for multiparameter cell analysis and subsequently as a supportive tool for flow cytometry (FC). ISS integrates the features of FC and fluorescent microscopy collecting images of acquired cells for offline digital image analysis. The article presents an overview of the main characteristics of ISS and a comparison between ISS, FC and the laser scanning cytometer (LSC). We reviewed ISS applications focusing on those involved in cellular phenotyping and provide our own experience with using ISS as a supportive tool to classical FC and demonstrate the compatibility between FC and ISS photometric analysis as well as the advantages of using ISS to confirm FC results.

Keywords: ImageStream; Flow cytometry; Peripheral blood

  • [1] Jones C.W., Smolinski D., Keogh A., Kirk T.B., Zheng M.H., Confocal laser scanning microscopy in orthopaedic research, Prog. Histochem. Cytochem., 2005, 40, 1–71 http://dx.doi.org/10.1016/j.proghi.2005.02.001 [Crossref]

  • [2] Henderson R., Realizing the potential of electron cryo-microscopy, Q. Rev. Biophys., 2004, 37, 3–13 http://dx.doi.org/10.1017/S0033583504003920 [Crossref]

  • [3] Subramaniam S., Milne J.L., Three-dimensional electron microscopy at molecular resolution, Annu. Rev. Biophys. Biomol. Struct., 2004, 33, 141–155 http://dx.doi.org/10.1146/annurev.biophys.33.110502.140339 [Crossref]

  • [4] Haupt B.J., Pelling A.E., Horton M.A., Integrated confocal and scanning probe microscopy for biomedical research, Scientific World Journal, 2006, 15, 1609–1618

  • [5] Lucitti J.L., Dickinson M.E., Moving toward the light: using new technology to answer old questions, Pediatr. Res., 2006, 60, 1–5 http://dx.doi.org/10.1203/01.pdr.0000220318.49973.32 [Crossref]

  • [6] Conchello J.A., Lichtman J.W., Optical sectioning microscopy, Nat. Meth., 2005, 2, 920 http://dx.doi.org/10.1038/nmeth815 [Crossref]

  • [7] Hansma P.K., Elings V.B., Marti O., Bracker C.E., Scanning tunneling microscopy and atomic force microscopy: application to biology and technology, Science, 1988, 242, 209–216 http://dx.doi.org/10.1126/science.3051380 [Crossref]

  • [8] Baumgarth N., Roederer M., A practical approach to multicolor flow cytometry for immunophenotyping, J. Immunol. Methods., 2000, 243, 77–97 http://dx.doi.org/10.1016/S0022-1759(00)00229-5 [Crossref]

  • [9] Bonetta L., Flow cytometry smaller and better, Nat. Meth., 2005, 2, 785–793 http://dx.doi.org/10.1038/nmeth1005-785 [Crossref]

  • [10] Jaroszeski M.J., Radcliff G., Fundamentals of flow cytometry, Mol. Biotechnol., 1999, 11, 37–53 http://dx.doi.org/10.1007/BF02789175 [Crossref]

  • [11] Radcliff G., Jaroszeski M.J., Basics of flow cytometry, Methods Mol. Biol., 1998, 91, 1–24

  • [12] Roederer M., Spectral compensation for flow cytometry, Visualization artifacts, limitations, and caveats, Cytometry A., 2001, 45, 194–205 http://dx.doi.org/10.1002/1097-0320(20011101)45:3<194::AID-CYTO1163>3.0.CO;2-C [Crossref]

  • [13] Shapiro H.M., Multistation multiparameter flow cytometry: a critical review and rationale, Cytometry, 1983, 3, 227–243 http://dx.doi.org/10.1002/cyto.990030402 [Crossref]

  • [14] Shapiro H.M., Practical Flow Cytometry, 4th ed. John Wiley & Sons, Inc., 2005.

  • [15] De Rosa S.C., Brenchley J.M., Roederer M., Beyond six colors: a new era in flow cytometry, Nat. Med., 2003, 9, 112–117 http://dx.doi.org/10.1038/nm0103-112 [Crossref]

  • [16] De Rosa S.C., Roederer M., Eleven-color flow cytometry. A powerful tool for elucidation of the complex immune system, Clin. Lab. Med., 2001, 21, 697–712

  • [17] Darzynkiewicz Z., Bedner E., X. Li, W. Gorczyca, M.R. Melamed, Laser-Scanning Cytometry: A New Instrumentation with Many Applications, Exp. Cell. Res., 1999, 249, 1–12 http://dx.doi.org/10.1006/excr.1999.4477 [Crossref]

  • [18] Deptala A., Bedner E., Darzynkiewicz Z., Unique analytical capabilities of laser scanning cytometry (LSC) that complement flow cytometry, Folia Histochem. Cytobiol., 2001, 39, 87–89

  • [19] Kamentsky L.A., Laser scanning cytometry, Methods Cell. Biol., 2001, 63, 51–87 http://dx.doi.org/10.1016/S0091-679X(01)63007-3 [Crossref]

  • [20] Kamentsky L.A., Burger D.E., Gershman R.J., Kamentsky L.D., Luther E., Slide-based laser scanning cytometry, Acta Cytol., 1997, 41, 123–143

  • [21] Ortyn W.E., Hall B.E., George T.C., Frost K., Basiji D.A., Perry D.J., et al., Sensitivity Measurement and Compensation in Spectral Imaging, Cytometry A., 2006, 69A, 852–862 http://dx.doi.org/10.1002/cyto.a.20306 [Crossref]

  • [22] George T.C., Fanning S.L., Fitzgeral-Bocarsly P., Medeiros R.B., Highfill S., Shimizu Y., et al., Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow, J. Immunol. Methods, 2006, 311, 117–129 http://dx.doi.org/10.1016/j.jim.2006.01.018 [Crossref]

  • [23] George T.C., Basiji D.A., Hall B., Lynch D.H., Ortyn W.E., Perry D.J., et al., Distinguishing Modes of Cell Death Using the ImageStream Multispectral Imaging Flow Cytometer, Cytometry A., 2004, 59A, 237–245 http://dx.doi.org/10.1002/cyto.a.20048 [Crossref]

  • [24] Arechiga A.F., Bell B.D., Solomon J.C., Chu I.H., Dubois C.L., Hall B.E., et al., Cutting edge: FADD is not required for antigen receptor-mediated NF-kappaB activation, J. Immunol., 2005, 175, 7800–7804 [Crossref]

  • [25] Basiji D., Ortyn W., Zimmerman C., Bauer R., Perry D., Esposito R., et al., Image data exploration and analysis software, ISAC XXIII., 2006, conference proceedings

  • [26] Hall B., George T., Basiji D., Frost K., Zimmerman C., Ortyn W., Automated Classification of Apoptosis and Artifact Rejection of TUNEL Positive Cells, ISAC XXIII., 2006, conference proceedings.

  • [27] Morrissey P., George T., Hall B., Zimmerman C., Frost K., Basiji D., et al., Cell Classification in Human Peripheral Blood using the Amnis ImageStream Flow Imaging System, FASEB, 2004, 19, A920

  • [28] Parsons C.H., Adang L.A., Overdevest J., O’Connor C.M., Taylor Jr. J.R., Camerini D., KSHV targets multiple leukocyte lineages during long-term productive infection in NOD/SCID mice, J. Clin. Invest., 2006, 116, 1963–1973 http://dx.doi.org/10.1172/JCI27249 [Crossref]

  • [29] Fanning S.L., George T.C., Feng D., Feldman S.B., Megjugorac N.J., Izaguirre A.G., et al., Receptor Cross-Linking on Human Plasmacytoid Dendritic Cells Leads to the Regulation of IFN-Production, J. Immunol., 2006, 177, 5829–5839 [Crossref]

  • [30] Beum P.V., Lindorfer M.A., Hall B.H., George T.C, Frost K., Morrissey P.J., et al., Quantitative analysis of protein co-localization on B cells opsonized with rituximab and complement using the ImageStream multispectral imaging flow cytometer, J. Immunol. Methods, 2006, 317, 90–99 http://dx.doi.org/10.1016/j.jim.2006.09.012 [Crossref]

  • [31] Matsuda J.L., George T.C., Hagman J., Gapin L., Temporal dissection of T-bet functions, J. Immunol., 2007, 178, 3457–3465 [Crossref]

  • [32] Gillard G.O., Farr A.G., Features of Medullary Thymic Epithelium Implicate Postnatal Development in Maintaining Epithelial Heterogeneity and Tissue-Restricted Antigen Expression, J. Immunol., 2006, 176, 5815–5824 [Crossref]

  • [33] Hall B., Perry D., Brawley J., George T., Zimmerman C., Frost K., et al., Multispectral High Content Cellular Analysis Using a Flow Based Imaging Cytometer, ISAC XXII., 2004, conference proceedings

  • [34] Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M.A., Lassota P., et al., Features of apoptotic cells measured by flow cytometry, Cytometry, 1992, 13, 795–808 http://dx.doi.org/10.1002/cyto.990130802 [Crossref]

  • [35] Glisic-Milosavljevic S., Waukau J., Jana S., Jailwala P., Rovensky J., Ghosh S., Comparison of apoptosis and mortality measurements in peripheral blood mononuclear cells (PBMCs) using multiple methods, Cell. Prolif., 2005, 38, 301–311 http://dx.doi.org/10.1111/j.1365-2184.2005.00351.x [Crossref]

  • [36] Vermes I., Haanen C., Reutelingsperger C., Flow cytometry of apoptotic cell death, J. Immunol. Methods, 2000, 243, 167–190 http://dx.doi.org/10.1016/S0022-1759(00)00233-7 [Crossref]

  • [37] Tan P.C., Kelly K.M., McNagny M., Hall B., Quantitative analysis of pseudopod formation with the ImageStream cell imaging system, http://www.amnis.com/docs/notes/Quantitative-PseudopodFormation.pdf, 2006

  • [38] Zuba-Surma E.K., Kucia M., Abdel-Latif A., Dawn B., Hall B., Singh R., et al., Morphological characterization of very small embryonic-like stem cells (VSELs) by ImageStream system analysis, J. Cell. Mol. Med., 2007, (in press)

  • [39] Kucia M., Halasa M., Wysoczynski M., Baskiewicz-Masiuk M., Moldenhawer S., Zuba-Surma E., et al., Morphological and molecular characterization of novel population of CXCR4(+) SSEA-4(+) Oct-4(+) very small embryonic-like cells purified from human cord blood-preliminary report, Leukemia, 2007, 21, 297–303 http://dx.doi.org/10.1038/sj.leu.2404470 [Crossref]

  • [40] Kucia M., Reca R., Campbell F.R., Zuba-Surma E., Majka M., Ratajczak J., et al., A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+) Oct-4+ stem cells identified in adult bone marrow, Leukemia, 2006, 20, 857–869 http://dx.doi.org/10.1038/sj.leu.2404171 [Crossref]

  • [41] Bedner E., Burfeind P., Gorczyca W., Melamed M.R., Darzynkiewicz Z., Laser scanning cytometry distinguishes lymphocytes, monocytes, and granulocytes by differences in their chromatin structure, Cytometry, 1997, 29, 191–196 http://dx.doi.org/10.1002/(SICI)1097-0320(19971101)29:3<191::AID-CYTO1>3.0.CO;2-F [Crossref]

  • [42] Gerstner A.O., Mittag A., Laffers W., Dahnert I., Lenz D., Bootz F., et al., Comparison of immunophenotyping by slide-based cytometry and by flow cytometry, J. Immunol. Methods, 2006, 311, 130–138 http://dx.doi.org/10.1016/j.jim.2006.01.012 [Crossref]

  • [43] Spibey C.A., Jackson P., Herick K., A unique charge-coupled device/xenon arc lamp based imaging system for the accurate detection and quantitation of multicolour fluorescence, Electrophoresis, 2001, 22, 829–836 http://dx.doi.org/10.1002/1522-2683()22:5<829::AID-ELPS829>3.0.CO;2-U [Crossref]

  • [44] Perfetto S.P., Chattopadhyay P.K., Roederer M., Seventeen-colour flow cytometry: unravelling the immune system, Nat. Rev. Immunol., 2004, 4, 648–655 http://dx.doi.org/10.1038/nri1416 [Crossref]

  • [45] Pozarowski P., Holden E., Darzynkiewicz Z., Laser scanning cytometry: principles and applications, Methods Mol. Biol., 2006, 319, 165–192

About the article

Published Online: 2008-03-01

Published in Print: 2008-03-01

Citation Information: Open Life Sciences, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-007-0044-8. Export Citation

© 2008 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

MZ Ratajczak, E Zuba-Surma, M Kucia, A Poniewierska, M Suszynska, and J Ratajczak
Advances in Medical Sciences, 2012, Volume 57, Number 1, Page 1
Mariusz Z. Ratajczak, Magda Kucia, Janina Ratajczak, and Ewa K. Zuba-Surma
Micron, 2009, Volume 40, Number 3, Page 386
E.K. Zuba-Surma, W. Wu, J. Ratajczak, M. Kucia, and M.Z. Ratajczak
Mechanisms of Ageing and Development, 2009, Volume 130, Number 1-2, Page 58
Ewa K. Zuba-Surma, Wojciech Wojakowski, Mariusz Z. Ratajczak, and Buddhadeb Dawn
Antioxidants & Redox Signaling, 2011, Volume 15, Number 7, Page 1821
Mariusz Z. Ratajczak, Ewa K. Zuba-Surma, Marcin Wysoczynski, Janina Ratajczak, and Magda Kucia
Experimental Hematology, 2008, Volume 36, Number 6, Page 742
Mariusz Z. Ratajczak, Ewa K. Zuba-Surma, Dong-Myung Shin, Janina Ratajczak, and Magda Kucia
Experimental Gerontology, 2008, Volume 43, Number 11, Page 1009
Ewa K. Zuba-Surma, Magdalena Kucia, Janina Ratajczak, and Mariusz Z. Ratajczak
Cytometry Part A, 2009, Volume 75A, Number 1, Page 4
Mariusz Z. Ratajczak, Ewa K. Zuba-Surma, Bogdan Machalinski, Janina Ratajczak, and Magda Kucia
Stem Cell Reviews, 2008, Volume 4, Number 2, Page 89

Comments (0)

Please log in or register to comment.
Log in