Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 3, Issue 1


Volume 10 (2015)

In vitro behaviour of osteoblast cells seeded into a COL/β-TCP composite scaffold

Elena Oprita
  • Department of Cell and Molecular Biology, National Institute R&D for Biological Sciences, 060031, Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucia Moldovan
  • Department of Cell and Molecular Biology, National Institute R&D for Biological Sciences, 060031, Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oana Craciunescu
  • Department of Cell and Molecular Biology, National Institute R&D for Biological Sciences, 060031, Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Otilia Zarnescu
Published Online: 2008-03-01 | DOI: https://doi.org/10.2478/s11535-007-0047-5


The purpose of the present study was to investigate the effect of a collagen/β-tricalcium phosphate (COL/β-TCP) composite on osteoblast growth and proliferation. The COL/β-TCP composite was prepared by mixing COL type I with β-TCP, in 1:1 (w/w) ratio and conditioned as sponge by freeze-drying. The osteoblast culture was obtained from rat calvaria bones by enzymatic digestion and cells were seeded in the COL/β-TCP composite. The cell morphology and viability, alkaline phosphatase and osteocalcin, as markers of osteoblast proliferation were evaluated at 3, 7 and 25 days of culture. Histological sections revealed that cell colonization progressively increased inside the COL/β-TCP scaffold, and osteoblasts had a random distribution throughout the scaffold. Cells cultured into the COL/β-TCP scaffold presented osteoblast phenotype, intense staining of alkaline phosphatase and increased production of osteocalcin. Transmission electron micrographs revealed intimate contacts between osteoblasts and the scaffold. MTT test indicated that the viability of the cells cultivated in the presence of COL/β-TCP scaffold was similar to that of the control. All these results show that our COL/β-TCP composite act as a good substrate for rat osteoblast proliferation and migration and could be a promising substitute for bone repair.

Keywords: Osteoblasts; Biocompatibility; Collagen; β-tricalcium phosphate; Bone regeneration

  • [1] Park J.B., Lakes R.S., Biomaterials an introduction, Plenum Press, New York, 1992 Google Scholar

  • [2] Aichelmann-Reidy M.E., Yukna R.A., Bone replacement grafts: the bone substitutes, Dent. Clin. North Am., 1998, 42, 491–503 Google Scholar

  • [3] Cutter C.S., Mehrara B.J., Bone grafts and substitutes, J. Long Term Eff. Med. Implants, 2006, 16, 249–260 CrossrefGoogle Scholar

  • [4] Holland T.A., Mikos A.G., Biodegradable polymeric scaffolds. Improvements in bone tissue engineering through controlled drug delivery, Adv. Biochem. Eng. Biotechnol., 2006, 102, 161–185 Google Scholar

  • [5] Yao C., Webster T.J., Anodization: a promising nanomodification technique of titanium implants for orthopedic applications, J. Nanosci. Nanotechnol., 2006, 6, 2682–2692 http://dx.doi.org/10.1166/jnn.2006.447CrossrefGoogle Scholar

  • [6] Knabe C., Diessens F.C., Planell J.A., Gildenhaar R., Berger G., Feif D., et al., Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures, J. Biomed. Mater. Res., 2000, 52, 498–508 http://dx.doi.org/10.1002/1097-4636(20001205)52:3<498::AID-JBM8>3.0.CO;2-PCrossrefGoogle Scholar

  • [7] Kasuga T., Bioactive calcium pyrophosphate glasses and glass-ceramics, Acta Biomater., 2005, 1, 55–64 http://dx.doi.org/10.1016/j.actbio.2004.08.001CrossrefGoogle Scholar

  • [8] Valimaki V.V., Aro H.T., Molecular basis for action of bioactive glasses as bone graft substitute, Scand. J. Surg., 2006, 95, 95–102 CrossrefGoogle Scholar

  • [9] Wang M., Developing bioactive composite materials for tissue replacement, Biomaterials, 2003, 24, 2133–2151 http://dx.doi.org/10.1016/S0142-9612(03)00037-1CrossrefGoogle Scholar

  • [10] Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 2006, 27, 3413–3431 http://dx.doi.org/10.1016/j.biomaterials.2006.01.039CrossrefGoogle Scholar

  • [11] Yamauchi K., Goda T., Takenchi, N. Einaga H., Tanabe T., Preparation of collagen/calcium phosphate multilayer sheet using enzymatic mineralization, Biomaterials, 2004, 25, 5481–5489 http://dx.doi.org/10.1016/j.biomaterials.2003.12.057CrossrefGoogle Scholar

  • [12] Wahl D.A., Czernuszka J.T., Collagen-hydroxyapatite composites for hard tissue repair, Eur. Cell Mat., 2006, 11, 43–56 CrossrefGoogle Scholar

  • [13] Ma L., Gao C., Mao Z., Zhou J., Shen J., Biodegradability and cell-mediated contraction of porous collagen scaffolds: the effect of lysine as a novel crosslinking bridge, J. Biomed. Mater. Res. A, 2004, 71, 334–342 http://dx.doi.org/10.1002/jbm.a.30170CrossrefGoogle Scholar

  • [14] Dang J.M., Leong K.W., Natural polymers for gene delivery and tissue engineering, Adv. Drug Deliv. Rev., 2006, 58, 487–499 http://dx.doi.org/10.1016/j.addr.2006.03.001CrossrefGoogle Scholar

  • [15] Yamanouchi K., Satomura K., Gotoh Y., Kitaoka E., Tobiume S., Kume K., et al., Bone formation by transplanted human osteoblasts cultured within collagen sponge with dexamethasone in vitro, J. Bone Miner. Res., 2001, 88, 55–64 Google Scholar

  • [16] Laurencin C., Khan Y., El-Amin S.F., Bone graft substitutes, Expert Rev. Med. Devices, 2006, 3, 49–57 http://dx.doi.org/10.1586/17434440.3.1.49CrossrefGoogle Scholar

  • [17] Zou C., Weng W., Deng X., Cheng K., Liu X., Du P., et al., Preparation and characterization of a porous b-tricalcium phosphate/collagen composites with an integrated structure, Biomaterials, 2005, 26, 5276–5284 http://dx.doi.org/10.1016/j.biomaterials.2005.01.064CrossrefGoogle Scholar

  • [18] Webster T.J., Siegel R.W., Bizios R., Osteoblast adhesion on nanophase ceramics, Biomaterials, 1999, 20, 1221–1227 http://dx.doi.org/10.1016/S0142-9612(99)00020-4CrossrefGoogle Scholar

  • [19] Fujita R., Yokoyama A., Nodosaka Y., Kohgo T., Kawasaki T., Ultrastructure of ceramic-bone interface using hydroxyapatite and β-tricalcium phosphate ceramics and replacement mechanism of β-tricalcium phosphate in bone, Tissue & Cell, 2003, 35, 427–440 http://dx.doi.org/10.1016/S0040-8166(03)00067-3CrossrefGoogle Scholar

  • [20] Takahashi Y., Yamamoto M., Tabata Y., Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and b-tricalcium phosphate, Biomaterials, 2005, 26, 4856–4865 http://dx.doi.org/10.1016/j.biomaterials.2005.01.012Google Scholar

  • [21] Cooke F.W., Ceramics in orthopedic surgery, Clin. Orthop., 1992, 276, 135–146 Google Scholar

  • [22] Hemmerle J., Leize M., Voegel J.C., Long-term behaviour of a hydroxyapatite/collagen-glycoaminoglycan biomaterial used for oral surgery: a case report, J. Mater. Sci. Mater. Med., 1995, 6, 360–366 http://dx.doi.org/10.1007/BF00120305CrossrefGoogle Scholar

  • [23] Flautre B., Pasquier G., Blary M.C., Anselme K., Hardouin P., Evaluation of hydroxyapatite powder coated with collagen as an injectable bone substitute: microscopic study in rabbit, J. Mater. Sci. Mater. Med., 1996, 7, 63–67 http://dx.doi.org/10.1007/BF00058716CrossrefGoogle Scholar

  • [24] Moldovan L., Oprita E.I., Craciunescu O., Tardei C., Bojin D., Zarnescu O., Histochemical and Scanning Electron Microscopy Characterization of Tricalcium Phosphate-Collagen Conjugated Sponges, Roum. Biotechnol. Lett., 2004, 9, 1887–1893 Google Scholar

  • [25] Gu Q., Zhu H.M., Zhang X.J., Apoptosis of rat osteoblasts in process of calcification in vitro, Acta Pharmacol. Sin., 2002, 23, 808–812 Google Scholar

  • [26] Declercq H., van der Vreken N., de Maeyer E., Verbeeck R., Schacht E., de Ridder L., et al., Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source, Biomaterials, 2004, 25, 757–768 http://dx.doi.org/10.1016/S0142-9612(03)00580-5CrossrefGoogle Scholar

  • [27] Liu Y., Peterson D.A., Kimura H., Schubert D., Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction, J. Neurochem., 1997, 69, 581–593 http://dx.doi.org/10.1046/j.1471-4159.1997.69020581.xCrossrefGoogle Scholar

  • [28] Geiger M., Li R.H., Friess W., Collagen sponges for bone regeneration with rhBMP-2, Adv. Drug Deliv. Rev., 2003, 55, 1613–1629 http://dx.doi.org/10.1016/j.addr.2003.08.010CrossrefGoogle Scholar

  • [29] Lawson A.C., Czernuska J.T., Collagen-calcium phosphate composites, Proc. Inst. Mech. Eng., 1998, 212, 413–425 http://dx.doi.org/10.1243/0954411981534187CrossrefGoogle Scholar

  • [30] Oprita E.I., Moldovan L., Craciunescu O., Buzgariu W., Tardei C., Zarnescu O., A bioactive collagen-b tricalcium phosphate scaffold for tissue engineering, Cent. Eur. J. Biol., 2006, 1, 61–72 http://dx.doi.org/10.2478/s11535-006-0005-7CrossrefGoogle Scholar

  • [31] Zhang S.M., Cui F.Z., Liao S.S., Zhu Y., Han L., Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite, J. Mat. Sci. Mat. Med., 2003, 14, 641–645 http://dx.doi.org/10.1023/A:1024083309982CrossrefGoogle Scholar

  • [32] Robey P.G., Bianco P., Termine J.D., The cellular biology and molecular biochemistry of bone formation, in Coe, F.L. Favus, M.J. (Eds), Disorders of Bone and Mineral Metabolism., Raven Press Ltd, 1992, 241–263 Google Scholar

  • [33] Torun Köse G., Korkusuz F., Korkusuz P., Purali N., Özkul A., Hasirci V., Bone generation on PHBV matrices: an in vitro study, Biomaterials, 2003, 24, 4999–5007 http://dx.doi.org/10.1016/S0142-9612(03)00417-4CrossrefGoogle Scholar

  • [34] O’Brien F.J, Harley B.A., Yannas I.V., Gibson L.J., The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials, 2005, 26, 433–441 http://dx.doi.org/10.1016/j.biomaterials.2004.02.052CrossrefGoogle Scholar

About the article

Published Online: 2008-03-01

Published in Print: 2008-03-01

Citation Information: Open Life Sciences, Volume 3, Issue 1, Pages 31–37, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-007-0047-5.

Export Citation

© 2008 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Burcu Sarikaya and Halil Murat Aydin
BioMed Research International, 2015, Volume 2015, Page 1
Dan Batalu, Ana Maria Stanciuc, Lucia Moldovan, Gheorghe Aldica, and Petre Badica
Materials Science and Engineering: C, 2014, Volume 42, Page 350
Oana Craciunescu, Christu Tardei, Lucia Moldovan, and Otilia Zarnescu
Open Life Sciences, 2011, Volume 6, Number 3

Comments (0)

Please log in or register to comment.
Log in