Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year

IMPACT FACTOR 2016 (Open Life Sciences): 0.448

CiteScore 2016: 1.02

SCImago Journal Rank (SJR) 2016: 0.329
Source Normalized Impact per Paper (SNIP) 2016: 0.621

Open Access
See all formats and pricing
More options …
Volume 4, Issue 1 (Mar 2009)


Benefit of nicorandil using an immunologic murine model of experimental colitis

Azadeh Hosseini-Tabatabaei
  • Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hadi Esmaily
  • Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reza Rahimian / Reza Khorasani
  • Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maryam Baeeri
  • Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ahmadreza Barazesh-Morgani
  • Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fatemeh Sari-Aslani / Mohammad Abdollahi
  • Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-01-31 | DOI: https://doi.org/10.2478/s11535-008-0047-0


Inflammatory bowel disease (IBD) is a chronic inflammatory condition with an unknown etiology. Nicorandil, a potassium channel opener, has been used for many years for the treatment of angina. Recently, it has been shown that nicorandil possesses some novel traits such as anti-apoptotic, gastroprotective, free radical scavenging, and anti-inflammatory properties. Therefore, we set out to examine the possible beneficial effect of nicorandil in a rat model of IBD. Colitis was induced by rectal administration of 2,4,6-trintrobenzene sulphonic acid (TNBS) into rats. Groups of animals used in this study were sham, control, and exposure to dexamethasone, nicorandil, glibenclamid (a pure adenosine triphosphate sensitive potassium channel (KATP) blocker), or nicorandil plus glibenclamid. Drugs were administered by gavage and animals were sacrificed after 7 days. Biochemical markers, including TNF-α and IL-1β, ferric reducing/antioxidant power (FRAP), myeloperoxidase (MPO) activity and thiobarbitoric acid-reactive substance (TBARS), were measured in the homogenate of colonic tissue. Results indicate that nicorandil significantly reduces macroscopic and histological damage induced by TNBS. Nicorandil diminishes MPO activity and levels of TBARS, TNF-∢, and IL-1β in damaged colonic tissue with a concomitant increase in FRAP value (P<0.01). These effects were not reversed by coadministration of glibenclamide. In conclusion, nicorandil is able to ameliorate experimental IBD with a dose in which it does not show any anti-hypertensive effect, and the mechanism of which is partially or totally independent from KATP channels. It is hypothesized that nitric oxide donation and free-radical scavenging properties of nicorandil upregulate endothelial nitric oxide synthase may be responsible for this phenomenon. These findings suggest that nicorandil can be useful in treatment of IBD, although further investigations are needed to elucidate the mechanisms involved.

Keywords: Nicorandil; Inflammatory bowel disease; Immunologic; Myeloperoxidase; Inflammatory cytokines; 2,4,6-trinitrobenzene sulphonic acid (TNBS)

  • [1] Jurjus A.R., Khoury N.N., Reimund J.M., Animal models of inflammatory bowel disease, J. Pharmacol. Toxicol. Method., 2004, 50, 81–92 http://dx.doi.org/10.1016/j.vascn.2003.12.002CrossrefGoogle Scholar

  • [2] Rezaie A., Parker R.D., Abdollahi M., Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause?, Dig. Dis. Sci., 2007, 52, 2015–2021 http://dx.doi.org/10.1007/s10620-006-9622-2CrossrefGoogle Scholar

  • [3] Blokhina O., Virolainen E., Fagerstedt K.V., Anti-oxidants, oxidative damage and oxygen deprivation stress: a review, Ann. Bot. (Lond)., 2003, 91, 179–194 http://dx.doi.org/10.1093/aob/mcf118CrossrefGoogle Scholar

  • [4] Middleton S.J., Shorthouse M., Hunter J.O., Increased nitric oxide synthesis in ulcerative colitis, Lancet, 1993, 341, 465–466 http://dx.doi.org/10.1016/0140-6736(93)90211-XCrossrefGoogle Scholar

  • [5] Panaccione R., Ferraz J.G., Beck P., Advances in medical therapy of inflammatory bowel disease, Curr. Opin. Pharmacol., 2005, 5, 566–572 Google Scholar

  • [6] Langmead L., Rampton D.S., Review article: complementary and alternative therapies for inflammatory bowel disease, Review, Aliment. Pharmacol. Ther., 2006, 23, 341–349 http://dx.doi.org/10.1111/j.1365-2036.2006.02761.xCrossrefGoogle Scholar

  • [7] Ashtaral-Nakhai L., Mohammadirad A., Yasa N., Minaie B., Nikfar S., Ghazanfari G., et al., Benefits of Zataria multiflora Boiss in experimental model of mouse inflammatory bowel disease, Evid. Based Complement. Alternat. Med., 2007, 4, 43–50 http://dx.doi.org/10.1093/ecam/nel051CrossrefGoogle Scholar

  • [8] Ghafari H., Yasa N., Mohammadirad A., Dehghan G., Zamani M.J., Nikfar S., et al., Protection by Ziziphora clinopoides of acetic acid-induced toxic bowel inflammation through reduction of cellular lipid peroxidation and myeloperoxidase activity, Hum. Exp. Toxicol., 2006, 25, 325–332 http://dx.doi.org/10.1191/0960327105ht626oaCrossrefGoogle Scholar

  • [9] Ghazanfari G., Minaie B., Yasa N., Nakhai L., Mohammadirad A., Nikfar S., et al., Biochemical and histopathological evidences for beneficial effects of Satureja khuzestanica jamzad essential oil on the mouse model of inflammatory bowel diseases, Toxicol. Mech. Methods, 2006, 16, 365–372 http://dx.doi.org/10.1080/15376520600620125CrossrefGoogle Scholar

  • [10] Rahimi R., Mozaffari S., Abdollahi M., On the use of herbal medicines in management of inflammatory bowel diseases: a systematic review of animal and human studies, Dig. Dis. Sci., 2008, [Epub ahead of print] (DOI 10.1007/s10620-008-0368-x) CrossrefGoogle Scholar

  • [11] Ebrahimi F., Esmaily H., Baeeri M., Mohammadirad A., Fallah S., Abdollahi M., Molecular evidences on the benefits of N-acetylcysteine in experimental colitis, Cent. Eur. J. Biol., 2008, 3, 135–142 http://dx.doi.org/10.2478/s11535-008-0005-xCrossrefGoogle Scholar

  • [12] Elahi B., Nikfar S., Derakhshani S., Vafaie M., Abdollahi M., On the benefit of probiotics in the management of pouchitis in patients underwent ileal pouch anal anastomosis: a meta-analysis of controlled clinical trials, Dig. Dis. Sci., 2007, 53, 1278–1284 http://dx.doi.org/10.1007/s10620-007-0006-zCrossrefGoogle Scholar

  • [13] Rezaie A., Taghavi Bayat B., Abdollahi M., Biologic management of fistulizing Crohn’s disease, Int. J. Pharmacol., 2005, 1, 17–24 http://dx.doi.org/10.3923/ijp.2005.17.24CrossrefGoogle Scholar

  • [14] Rahimi R., Nikfar S., Rezaie A., Abdollahi M., A meta-analysis of the benefit of probiotics in maintaining remission of human ulcerative colitis: evidence for prevention of disease relapse and maintenance of remission, Arch. Med. Sci., 2008, 4, 185–190 Google Scholar

  • [15] Rahimi R, Nikfar S., Rahimi F., Elahi B., Derakhshani S., Vafaie M., et al., A meta-analysis on the efficacy of probiotics for maintenance of remission and prevention of clinical and endoscopic relapse in Crohn’s disease, Dig. Dis. Sci., 2008, 53, 2524–2531 http://dx.doi.org/10.1007/s10620-007-0171-0CrossrefGoogle Scholar

  • [16] Rahimi R., Nikfar S., Rezaie A., Abdollahi M., A meta-analysis of antibiotic therapy for active ulcerative colitis, Dig. Dis. Sci., 2007, 52, 2920–2925 http://dx.doi.org/10.1007/s10620-007-9760-1CrossrefGoogle Scholar

  • [17] Rahimi R., Nikfar S., Rezaie A., Abdollahi M., A meta-analysis of broad spectrum antibiotic therapy in patients with active Crohn’s disease, Clin. Ther., 2006, 28, 1983–1988 http://dx.doi.org/10.1016/j.clinthera.2006.12.012CrossrefGoogle Scholar

  • [18] Dubinsky M.C., Targeting Therapy in Pediatric Inflammatory Bowel Disease, Curr. Treat. Options Gastroenterol., 2004, 7, 391–405 http://dx.doi.org/10.1007/s11938-004-0052-yCrossrefGoogle Scholar

  • [19] Akai K., Wang Y., Sato K., Sekiguchi N., Sugimura A., Kumagai T., et al., Vasodilatory effect of nicorandil on coronary arterial microvessels: its dependency on vessel size and the involvement of the ATP-sensitive potassium channels, J. Cardiovasc. Pharmacol., 1995, 26, 541–547 http://dx.doi.org/10.1097/00005344-199510000-00006CrossrefGoogle Scholar

  • [20] Hosseini-Tabatabaei A., Abdollahi M., Potassium channel openers and improvement of toxic stress: Do they have role in the management of Inflammatory bowel disease?, Inflamm. Allergy Drug Targets, 2008, 7, 129–135 http://dx.doi.org/10.2174/187152808785748164CrossrefGoogle Scholar

  • [21] Heywood G.J., Thomas P.S., Nicorandil inhibits degranulation and TNF-alpha release from RBL-2H3 cells, Inflamm. Res., 2002, 51, 176–181 http://dx.doi.org/10.1007/PL00000289Google Scholar

  • [22] Facundo H.T., De Paula J.G., Kowaltowski A.J., Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production, Free Radic. Biol. Med., 2007, 42, 1039–1048 http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.001CrossrefGoogle Scholar

  • [23] Facundo H.T., De Paula J.G, Kowaltowski A.J., Mitochondrial ATP-sensitive K+ channels prevent oxidative stress, permeability transition and cell death, J. Bioenerg. Biomembr., 2005, 37, 75–82 http://dx.doi.org/10.1007/s10863-005-4130-1CrossrefGoogle Scholar

  • [24] Wang Y.P., Maeta H., Mizoguchi K., Suzuki T., Yamashita Y., Oe M., Intestinal ischemia preconditions myocardium: role of protein kinase C and mitochondrial K(ATP) channel, Cardiovasc. Res., 2002, 55, 576–582 http://dx.doi.org/10.1016/S0008-6363(02)00245-6CrossrefGoogle Scholar

  • [25] Teshima Y., Akao M., Baumgartner W.A., Marbán E., Nicorandil prevents oxidative stress-induced apoptosis in neurons by activating mitochondrial ATP-sensitive potassium channels, Brain. Res., 2003, 990, 45–50 http://dx.doi.org/10.1016/S0006-8993(03)03383-3CrossrefGoogle Scholar

  • [26] Akao M., Teshima Y., Marbán E., Antiapoptotic effect of nicorandil mediated by mitochondrial atpsensitive potassium channels in cultured cardiac myocytes, J. Am. Coll. Cardiol., 2002, 40, 803–810 http://dx.doi.org/10.1016/S0735-1097(02)02007-7CrossrefGoogle Scholar

  • [27] Nagata K., Obata K., Odashima M., Yamada A., Somura F., Nishizawa T., et al., Nicorandil inhibits oxidative stress-induced apoptosis in cardiac myocytes through activation of mitochondrial ATP-sensitive potassium channels and a nitrate-like effect, J. Mol. Cell. Cardiol., 2003, 35, 1505–1512 http://dx.doi.org/10.1016/j.yjmcc.2003.09.018CrossrefGoogle Scholar

  • [28] Xu J., Nagata K., Obata K., Ichihara S., Izawa H., Noda A., et al., Nicorandil promotes myocardial capillary and arteriolar growth in the failing heart of Dahl salt-sensitive hypertensive rats, Hypertension, 2005, 46, 719–724 http://dx.doi.org/10.1161/01.HYP.0000185189.46698.15CrossrefGoogle Scholar

  • [29] Ismail H.A., Khalifa M.M., Hassan M.K., Ashour O.M., Insights in the mechanisms underlying the anti-ulcer activity of nicorandil, Pharmazie, 2007, 62, 60–67 Google Scholar

  • [30] Mourelle M., Vilaseca J., Guarner F., Salas A., Malagelada J.R., Toxic dilatation of colon in a rat model of colitis is linked to an inducible form of nitric oxide synthase, Am. J. Physiol., 1996, 270, G425–G430 Google Scholar

  • [31] Abdollahi M., Dehpour A.R., Baharnouri G., Alteration by rubidium of rat submandibular secretion of protein and N-acetyl-D-glucosaminidase, Tox. Subst. Mech., 1998, 17, 121–131 http://dx.doi.org/10.1080/107691898229369CrossrefGoogle Scholar

  • [32] Wallace J.L., Keenan C.M., Gale D., Shoupe T.S., Exacerbation of experimental colitis by nonsteroidal anti-inflammatory drugs is not related to elevated leukotriene B4 synthesis, Gastroenterology, 1992, 102, 18–27 CrossrefGoogle Scholar

  • [33] Mustafa A., El-Medany A., Hagar H.H., El-Medany G., Ginkgo biloba attenuates mucosal damage in a rat model of ulcerative colitis, Pharmacol. Res., 2006, 53, 324–330 http://dx.doi.org/10.1016/j.phrs.2005.12.010CrossrefGoogle Scholar

  • [34] Cuzzocrea S., Ianaro A., Wayman N.S., Mazzon E., Pisano B., Dugo L., et al., The cyclopentenone prostaglandin 15-deoxy-delta(12,14)-PGJ2 attenuates the development of colon injury caused by dinitrobenzene sulphonic acid in the rat, Br. J. Pharmacol., 2003, 138, 678–688 http://dx.doi.org/10.1038/sj.bjp.0705077CrossrefGoogle Scholar

  • [35] Dehghan G., Shafiee A., Ghahremani M.H., Ardestani S.K., Abdollahi M., Antioxidant potential of various extracts from Ferula szovitsiana in relation to their phenolic content, Pharm. Biol., 2007, 45, 691–699 http://dx.doi.org/10.1080/13880200701575098CrossrefGoogle Scholar

  • [36] Astaneie F., Afshari M., Mojtahedi A., Mostafalou S., Zamani M.J., Larijani B., et al., Total antioxidant capacity and levels of epidermal growth factor and nitric oxide in blood and saliva of insulin-dependent diabetic patients, Arch. Med. Res., 2005, 36, 376–381 http://dx.doi.org/10.1016/j.arcmed.2005.03.007CrossrefGoogle Scholar

  • [37] Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, 193, 265–275 Google Scholar

  • [38] Torres M.I., García-Martin M., Fernández M.I., Nieto N., Gil A., Ríos A., Experimental colitis induced by trinitrobenzenesulfonic acid: an ultrastructural and histochemical study, Dig. Dis. Sci., 1999, 44, 2523–2529 http://dx.doi.org/10.1023/A:1026651408998CrossrefGoogle Scholar

  • [39] Kolgazi M., Jahovic N., Yuksel M., Ercan F., Alican I., α-lipoic acid modulates gut inflammation induced by trinitrobenzene sulfonic acid in rats, J. Gastroenterol. Hepatol., 2007, 22, 1859–1865 http://dx.doi.org/10.1111/j.1440-1746.2006.04504.xCrossrefGoogle Scholar

  • [40] Shen C., De Hertogh G., Bullens D.M., Van Assche G., Geboes K., Rutgeerts P., et al., Remission-inducing effect of anti-TNF monoclonal antibody in TNBS colitis: mechanisms beyond neutralization?, Inflamm. Bowel. Dis., 2007, 13, 308–316 http://dx.doi.org/10.1002/ibd.20005CrossrefGoogle Scholar

  • [41] Rahimi R., Nikfar S., Abdollahi M., Do anti-tumor necrosis factors induce response and remission in patients with acute refractory Crohn’s disease? A systematic meta-analysis of controlled clinical trials, Biomed. Pharmacother., 2007, 61, 75–80 http://dx.doi.org/10.1016/j.biopha.2006.06.022CrossrefGoogle Scholar

  • [42] Rahimi R., Nikfar S., Abdollahi M., Meta-analysis technique confirms the effectiveness of anti-TNF-a in the management of active ulcerative colitis when administered in combination with corticosteroids, Med. Sci. Monitor., 2007, 13, PI13–PI18 Google Scholar

  • [43] Ludwiczek O., Vannier E., Borggraefe I., Kaser A., Siegmund B., Dinarello C.A., et al., Imbalance between interleukin-1 agonists and antagonists: relationship to severity of inflammatory bowel disease, Clin. Exp. Immunol., 2004, 138, 323–329 http://dx.doi.org/10.1111/j.1365-2249.2004.02599.xCrossrefGoogle Scholar

  • [44] Simmonds N.J., Rampton D.S., Inflammatory bowel disease—a radical view, Gut, 1993, 34, 865–868 http://dx.doi.org/10.1136/gut.34.7.865CrossrefGoogle Scholar

  • [45] Suzuki M., Saito T., Sato T., Tamagawa M., Miki T., Seino S., Nakaya H., Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice, Circulation, 2003, 107, 682–685 http://dx.doi.org/10.1161/01.CIR.0000055187.67365.81CrossrefGoogle Scholar

  • [46] Hanley P.J., Daut J., K(ATP) channels and preconditioning: a re-examination of the role of mitochondrial K(ATP) channels and an overview of alternative mechanisms, J. Mol. Cell. Cardiol., 2005, 39, 17–50 http://dx.doi.org/10.1016/j.yjmcc.2005.04.002CrossrefGoogle Scholar

  • [47] Inoue I., Nagase H., Kishi K., Higuti T., ATP-sensitive K+ channel in the mitochondrial inner membrane, Nature, 1991, 352, 244–247 http://dx.doi.org/10.1038/352244a0CrossrefGoogle Scholar

  • [48] Deby-Dupont G., Deby C., Lamy M., Neutrophil myeloperoxidase revisited: its role in health and disease, Intensivmed., 1999, 36, 500–551 http://dx.doi.org/10.1007/s003900050270CrossrefGoogle Scholar

  • [49] Kruidenier L., Kuiper I., Van Duijn W., Mieremet-Ooms M.A., van Hogezand R.A., Lamers C.B., et al., Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease, J. Pathol., 2003, 201, 17–27 http://dx.doi.org/10.1002/path.1408CrossrefGoogle Scholar

  • [50] Kruidenier L., Kuiper I., Lamers C.B., Verspaget H.W., Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants, J. Pathol., 2003, 201, 28–36 http://dx.doi.org/10.1002/path.1409CrossrefGoogle Scholar

  • [51] Ahmed A.O., Sharifzadeh M., Nikfar S., Jamshidi H.R., Abdollahi M., Prevention by L-arginine/nitric oxide of chlordiazepoxide-induced toxic reactions in the rat salivary gland, Toxicol. Mech. Method., 2006, 16, 331–337 http://dx.doi.org/10.1080/15376520600620067CrossrefGoogle Scholar

  • [52] Abdollahi M., Dehpour A.R., Shafayee F., L-Arginine/nitric oxide pathway and interaction with lead acetate on rat submandibulary gland function, Pharmacol. Toxicol., 2000, 87, 198–203 http://dx.doi.org/10.1034/j.1600-0773.2000.d01-74.xCrossrefGoogle Scholar

  • [53] Kolios G., Valatas V., Ward S.G., Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle, Immunology, 2004, 113, 427–437 http://dx.doi.org/10.1111/j.1365-2567.2004.01984.xCrossrefGoogle Scholar

  • [54] Barrachina M.D., Panes J., Esplugues J.V., Role of nitric oxide in gastrointestinal inflammatory and ulcerative diseases: perspective for drugs development, Curr. Pharm. Des., 2001, 7, 31–48 http://dx.doi.org/10.2174/1381612013398491CrossrefGoogle Scholar

  • [55] Jahanshahi G., Motavasel V., Rezaie A., Hashtroudi A.A., Daryani N.E., Abdollahi M., Alterations in antioxidant power and levels of epidermal growth factor and nitric oxide in saliva of patients with inflammatory bowel diseases, Dig. Dis. Sci., 2004, 49, 1752–1757 http://dx.doi.org/10.1007/s10620-004-9564-5CrossrefGoogle Scholar

  • [56] Horinaka S., Kobayashi N., Yabe A., Asakawa H., Yagi H., Mori Y., et al., Nicorandil protects against lethal ischemic ventricular arrhythmias and up-regulates endothelial nitric oxide synthase expression and sulfonylurea receptor 2 mRNA in conscious rats with acute myocardial infarction, Cardiovasc. Drugs Ther., 2004, 18, 13–22 http://dx.doi.org/10.1023/B:CARD.0000025751.82774.a9Google Scholar

  • [57] Horinaka S., Kobayashi N., Higashi T., Hara K., Hara S., Matsuoka H., Nicorandil enhances cardiac endothelial nitric oxide synthase expression via activation of adenosine triphosphate-sensitive K channel in rat, J. Cardiovasc. Pharmacol., 2001, 38, 200–210 http://dx.doi.org/10.1097/00005344-200108000-00005CrossrefGoogle Scholar

  • [58] Pompermayer K., Souza D.G., Lara G.G., Silveira K.D., Cassali G.D., Andrade A.A., et al., The ATPsensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats, Kidney Int., 2005, 67, 1785–1796 http://dx.doi.org/10.1111/j.1523-1755.2005.00276.xCrossrefGoogle Scholar

  • [59] Pompermayer K., Amaral F.A., Fagundes C.T., Vieira A.T., Cunha F.Q., Teixeira M.M., et al., Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury, Eur. J. Pharmacol., 2007, 556, 215–222 http://dx.doi.org/10.1016/j.ejphar.2006.10.065CrossrefGoogle Scholar

  • [60] Flavio A.G., Cunha F.Q., Francescato H.D., Soares T.J., Costa R.S., Barbosa Junior F., et al., ATP-sensitive potassium channel blockage attenuates cisplatin-induced renal damage, Kidney Blood Press. Res., 2007, 30, 289–298 http://dx.doi.org/10.1159/000105816CrossrefGoogle Scholar

  • [61] Sarkhail P., Rahmanipour S., Fadyevatan S., Mohammadirad A., Dehghan G., Amin G., et al., Antidiabetic effect of Phlomis anisodonta: Effects on hepatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes, Pharmacol. Res., 2007, 56, 261–266 http://dx.doi.org/10.1016/j.phrs.2007.07.003CrossrefGoogle Scholar

  • [62] Cocks T.M., King S.J., Angus J.A., Glibenclamide is a competitive antagonist of the thromboxane A2 receptor in dog coronary artery in vitro, Br. J. Pharmacol., 1990, 100, 375–378 Google Scholar

  • [63] Rampton D.S., Collins C.E., Review article: thromboxanes in inflammatory bowel disease—pathogenic and therapeutic implications, Aliment. Pharmacol. Ther., 1993, 7, 357–367 http://dx.doi.org/10.1111/j.1365-2036.1993.tb00109.xCrossrefGoogle Scholar

  • [64] Reichert S., Antunes A., Tréchot P., Barbaud A., Weber M., Schmutz J.L., Major aphthous stomatitis induced by nicorandil, Eur. J. Dermatol., 1997, 7, 132–133 Google Scholar

  • [65] Watson A., Al-Ozairi O., Fraser A., Loudon M., O’Kelly T., Nicorandil associated anal ulceration, Lancet, 2002, 360, 546–547 http://dx.doi.org/10.1016/S0140-6736(02)09710-6CrossrefGoogle Scholar

  • [66] McKenna D.J., Donnelly J., Armstrong D.K., Nicorandil-induced leg ulceration, Br. J. Dermatol., 2007, 156, 394–396 http://dx.doi.org/10.1111/j.1365-2133.2006.07643.xCrossrefGoogle Scholar

About the article

Published Online: 2009-01-31

Published in Print: 2009-03-01

Citation Information: Open Life Sciences, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-008-0047-0.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hadi Esmaily, Azadeh Hosseini-Tabatabaei, Reza Rahimian, Reza Khorasani, Maryam Baeeri, Ahmadreza Barazesh-Morgani, Nargues Yasa, Yassaman Khademi, and Mohammad Abdollahi
Open Life Sciences, 2009, Volume 4, Number 2
Mohammad A. Rezvanfar, Sepideh Saadat, Habib A. Shojaei Saadi, Parisa Mansoori, Sarah Saeedi, Maziar Gooshe, Maryam Baeeri, and Mohammad Abdollahi
Theriogenology, 2015, Volume 83, Number 6, Page 968
Mohammad Amin Rezvanfar, Habib A. Shojaei Saadi, Maziar Gooshe, Amir Hosein Abdolghaffari, Maryam Baeeri, and Mohammad Abdollahi
Oxidative Medicine and Cellular Longevity, 2014, Volume 2014, Page 1
Gohar Fakhfouri, Reza Rahimian, Saeed Hashemi, Mohammad Reza Rasouli, Arash Bahremand, Shahram Ejtemaei Mehr, Mohammad Reza Khorramizadeh, and Ahmad Reza Dehpour
Fundamental & Clinical Pharmacology, 2012, Volume 26, Number 2, Page 190
Pooneh Salari
International Journal of Pharmacology, 2011, Volume 7, Number 6, Page 679
Afrooz Saadatzadeh, Fatemeh Atyabi, Mohammad Reza Fazeli, Rassoul Dinarvand, Hossein Jamalifar, Amir Hossein Abdolghaffari, Parvin Mahdaviani, Mirgholamreza Mahbod, Maryam Baeeri, Amir Baghaei, Azadeh Mohammadirad, and Mohammad Abdollahi
Fundamental & Clinical Pharmacology, 2012, Volume 26, Number 5, Page 589
Ali Daneshmand, Hamed Mohammadi, Reza Rahimian, Peiman Habibollahi, Gohar Fakhfouri, Saman Shafat Talab, Shahram Ejtemaei Mehr, and Ahmad Reza Dehpour
Journal of Gastroenterology and Hepatology, 2011, Volume 26, Number 7, Page 1174
Farshad Malihi, Azadeh Hosseini-Tabatabaei, Hadi Esmaily, Reza Khorasani, Maryam Baeeri, and Mohammad Abdollahi
Open Life Sciences, 2009, Volume 4, Number 3

Comments (0)

Please log in or register to comment.
Log in