Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year


IMPACT FACTOR 2017: 0.764
5-year IMPACT FACTOR: 0.787

CiteScore 2017: 0.88

SCImago Journal Rank (SJR) 2017: 0.271
Source Normalized Impact per Paper (SNIP) 2017: 0.545

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 4, Issue 1

Issues

Volume 10 (2015)

Changes in the human nuclear chromatin induced by ultra wideband pulse irradiation

Yuriy Shckorbatov / Vladimir Pasiuga / Nicolai Kolchigin / Dmitry Batrakov / Oleg Kazansky / Vladimir Kalashnikov
Published Online: 2009-01-31 | DOI: https://doi.org/10.2478/s11535-008-0051-4

Abstract

The effects of ultra wideband pulse radiation on human cells were investigated. The density of the flow of energy on the surface of irradiated object varied from 10−6 to 10−2 W/cm2 with exposure of 10 s. It was shown that heterochromatin granule quantity in cell nuclei increased under the influence of radiation from 10−4 to 10−2 W/cm2. In some intervals the effect increased with irradiation dose. At irradiation intensity 10−3 W/cm2 the process of heterochromatin granule formation was fully reversible after 2 h of recovery; at intensity 10−2 W/cm2 the reversion of irradiation effects was not full. The data obtained indicated the strong biological activity of ultra wideband ultra short pulse radiation.

Keywords: Ultra wideband pulse radiation; Image processing; Cell nucleus; Chromatin; Heterochromatin

  • [1] Salford L.G., Brun A.E., Eberhardt J.L., Malmgren L., Persson B.R., Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones, Environ. Health Perspect., 2003, 111, 881–883 Google Scholar

  • [2] Yao K., Wang K.J., Sun Z.H., Tan J., Xu W., Zhu L.J., et al., Low power microwave radiation inhibits the proliferation of rabbit lens epithelial cells by upregulating P27Kip1 expression, Mol. Vis., 2004, 10, 138–143 Google Scholar

  • [3] Garaj-Vrhovac V., Fucic A., Horvat D., The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwaves, Mutat. Res., 1992, 281, 181–186 http://dx.doi.org/10.1016/0165-7992(92)90006-4CrossrefGoogle Scholar

  • [4] Garaj-Vrhovac V., Horvat D., Koren Z., Effect of microwave radiation on the cell genome, Mutat. Res., 1990, 243, 87–93 http://dx.doi.org/10.1016/0165-7992(90)90028-ICrossrefGoogle Scholar

  • [5] Shckorbatov Y.G., Shakhbazov V.G., Grigoryeva N.N., Grabina V.A., Bogoslavsky A.M., Microwave irradiation influences on the state of human cell nuclei, Bioelectromagnetics, 1998, 19, 414–419 http://dx.doi.org/10.1002/(SICI)1521-186X(1998)19:7<414::AID-BEM2>3.0.CO;2-4CrossrefGoogle Scholar

  • [6] Shckorbatov Y.G., Shakhbazov V.G., Navrotska V.V., Zhuravliova L.A., Gorobets N.N., Kiyko V.I., et al., Changes in the state of chromatin in human cells under the influence of microwave radiation, In: Janiszewski J.M. (Ed.), Sixteenth International Wroclaw Symposium and Exhibition on Electromagnetic Compatibility, (11–13 June 2002, Wroclaw, Poland), Part 1, 87–88 Google Scholar

  • [7] Sarimov R., Malmgren L.O.G., Markova E., Persson B.R.R., Belyaev I.Y., Nonthermal GSM microwaves affect chromatin conformation in human lymphocytes similar to heat shock, IEEE T. Plasma Sci., 2004, 32, 1600–1608 http://dx.doi.org/10.1109/TPS.2004.832613CrossrefGoogle Scholar

  • [8] Shckorbatov Y.G., Trofimov S.V., Shakhbazov V.G., Grabina V.A., Gorobets N.N., The influence of microwaves with different state of polarization upon the state of chromatin and viability of Drosophila, In: Shifrin Y.S. (Ed.), 2nd International workshop “Ultra wideband and ultrashort impulse signals” (19–22 September 2004, Sevastopol, Ukraine), 246–247 Google Scholar

  • [9] Markovà E., Hillert L., Malmgren L., Persson B.R.R., Belyaev I.Y., Microwaves from GSM Mobile Telephones Affect 53BP1 and γ-H2AX Foci in Human Lymphocytes from Hypersensitive and Healthy Persons, Environ. Health Perspect., 2005, 113, 1172–1177 http://dx.doi.org/10.1289/ehp.7561Google Scholar

  • [10] Kolchigin N.N., Batrakov D.O., Shckorbatov Y.G., Pasiuga V.N., Kazansky O.V., The effects of short exposition to low-energy impulse irradiation on human cells, In: Shifrin Y.S. (Ed.), 3rd International Conference “Ultra wideband and ultrashort impulse signals” (18–22 September 2006, Sevastopol, Ukraine), 151–152 Google Scholar

  • [11] Thorlin T., Rouquette J.M., Hamnerius Y., Hansson E., Persson M., Bjorklund U., et al., Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation, Radiat. Res., 2006, 166, 409–412 http://dx.doi.org/10.1667/RR3584.1CrossrefGoogle Scholar

  • [12] Lewin B., Genes VIII, New York, Pearson Prentice Hall, 2004 Google Scholar

  • [13] Plehn-Dujowich D., Bell P., Ishov A.M., Baumann C., Maul G.G., Non-apoptotic chromosome condensation induced by stress: delineation of interchromosomal spaces, Chromosoma, 2000, 109, 266–279 http://dx.doi.org/10.1007/s004120000073CrossrefGoogle Scholar

  • [14] Matera A.G., Nuclear bodies: multifaceted subdomains of the interchromatin space, Trends Cell Biol., 1999, 8, 302–309 http://dx.doi.org/10.1016/S0962-8924(99)01606-2CrossrefGoogle Scholar

  • [15] Pirkkala L., Nykanen P., Sistonen L., Roles of the heat shock transcription factors in regulation of the heat shock response and beyond, FASEB J., 2001, 15, 1118–1131 http://dx.doi.org/10.1096/fj00-0294revCrossrefGoogle Scholar

  • [16] Jolly C., Morimoto R., Robert-Nicoud M., Vourc’h C., HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites, J. Cell Sci., 1997, 110, 2935–2941 Google Scholar

  • [17] Jolly C., Usson Y., Morimoto R., Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules, Proc. Natl. Acad. Sci. USA, 1999, 96, 6769–6774 http://dx.doi.org/10.1073/pnas.96.12.6769Google Scholar

  • [18] Denegri M., Chiodi I., Corioni M., Cobianchi F., Riva S., Biamonti G., Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors, Mol. Biol. Cell, 2001, 12, 3502–3514 CrossrefGoogle Scholar

  • [19] Cotto J., Fox S., Morimoto R., HSF1 granules: a novel stress-induced nuclear compartment of human cells, J. Cell Sci., 1997, 110, 2925–2934 CrossrefGoogle Scholar

  • [20] Jolly C., Konecny L., Grady D., Kutskova Y., Cotto J., Morimoto R., et al., In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress, J. Cell Biol., 2002, 156, 775–781 http://dx.doi.org/10.1083/jcb.200109018Google Scholar

  • [21] Denegri M., Moralli D., Rocchi M., Biggiogera M., Raimondi E., Cobianchi F., et al., Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies, Proc. Natl. Acad. Sci. USA, 2002, 13, 2069–2079 Google Scholar

  • [22] Shckorbatov Y.G., He-Ne laser light induced changes in the state of chromatin in human cells, Naturwissenschaften, 1999, 86, 452–453 http://dx.doi.org/10.1007/s001140050653CrossrefGoogle Scholar

  • [23] Shckorbatov Y.G., Shakhbazov V.G., Bogoslavsky A.M., Rudenko A.O., On age-related changes of cell membrane permeability in human buccal epithelium cells, Mech. Ageing Develop., 1995, 83, 87–90 http://dx.doi.org/10.1016/0047-6374(95)93574-MCrossrefGoogle Scholar

  • [24] Lin J.C., Interaction of Electromagnetic Transient Radiation with Biological Materials, IEEE Transactions on Electromagnetic Compatibility, 1975, 17, 93–97 http://dx.doi.org/10.1109/TEMC.1975.303392CrossrefGoogle Scholar

  • [25] Michaelson S.M., Microwave biological effects: An overview, Proc. IEEE, 1980, 68, 40–49 http://dx.doi.org/10.1109/PROC.1980.11579CrossrefGoogle Scholar

  • [26] Astumian R.D., Weaver J.C., Adair R.K., Rectification and signal averaging of weak electric fields by biological cells, Proc. Natl. Acad. Sci. USA, 1995, 92, 3740–3743 http://dx.doi.org/10.1073/pnas.92.9.3740CrossrefGoogle Scholar

  • [27] Blank M., Goodman R., Initial interactions in electromagnetic field-induced biosynthesis, J. Cell. Physiol., 2004, 199, 359–363 http://dx.doi.org/10.1002/jcp.20004CrossrefGoogle Scholar

About the article

Published Online: 2009-01-31

Published in Print: 2009-03-01


Citation Information: Open Life Sciences, Volume 4, Issue 1, Pages 97–106, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-008-0051-4.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Galyna B. Skamrova, Ivan Laponogov, Anatoly S. Buchelnikov, Yuriy G. Shckorbatov, Svitlana V. Prylutska, Uwe Ritter, Yuriy I. Prylutskyy, and Maxim P. Evstigneev
European Biophysics Journal, 2014, Volume 43, Number 6-7, Page 265
[2]
Yuriy Shckorbatov, Vladimir Pasiuga, Nicolay Kolchigin, Valentin Grabina, Dmitry Ivanchenko, Victor Bykov, and Oleksandr Dumin
Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., 2011, Volume 65, Number 1-2

Comments (0)

Please log in or register to comment.
Log in