Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 4, Issue 1


Volume 10 (2015)

Anabolic androgenic steroids effects on the immune system: a review

Sonya Marshall-Gradisnik / Rachel Green / Ekua Brenu / Robert Weatherby
Published Online: 2009-01-31 | DOI: https://doi.org/10.2478/s11535-008-0058-x


Androgenic anabolic steroids (AAS) are synthetic derivatives of the male hormone testosterone. AAS are used by athletes and recreational users of all ages to enhance their athletic performance and/or physical appearance. While several adverse effects of AAS abuse have been described, their effect on the immune system has not been clearly elucidated. The literature generally indicates that supraphysiologic doses of AAS with an intact steroid nucleus are immunosuppressive, that is they reduce immune cell number and function. While those with alterations to the steroid nucleus are immunostimulatory as they induce the proliferation of T cells and other immune cells. Specifically, several common AAS have been shown to adversely influence lymphocyte differentiation and proliferation, antibody production, Natural Killer Cytotoxic activity and the production of certain cytokines, thereby altering the immune reaction. These effects may be profound and long lasting depending on the dosing regime, types or combinations of AAS used and the extent and duration of AAS abuse. Nevertheless, the effects of long term use of supraphysiologic doses of AAS on the immune system remain uncertain.

Keywords: Androgenic anabolic steroids; Lymphocytes; Immune system; Natural killer; Performance

  • [1] Hoberman J., Yesalis C., The history of synthetic testosterone, Scientific American 1995, 272, 76–81 http://dx.doi.org/10.1038/scientificamerican0295-76CrossrefGoogle Scholar

  • [2] Ariel G., Saville W., Anabolic steroids: the physiological effects of placebos, Med. Sci. Sports, 1972, 4, 124–126 Google Scholar

  • [3] Cicero T.J., O’Connor L.H., Abuse liability of anabolic steroids and their possible role in the abuse of alcohol, morphine and other substances, In: Lin G.C., Erinoff L. (Eds.), Anabolic steroid abuse, National Institute on Drug Abuse, Rockville, 1990 Google Scholar

  • [4] Kadi F., Adaptation of human skeletal muscle to training and anabolic steroids, Acta Physiol. Scand. Suppl., 2000, 646, 1–52 Google Scholar

  • [5] Kadi F., Eriksson A., Holmner S., Thornell L., Effects of anabolic steroids on the muscle cells of strength trained athletes, Med. Sci. Sports. Exerc., 1999, 31, 1528–1534 CrossrefGoogle Scholar

  • [6] Giorgi A., Weatherby R.P., Murphy P., Muscular strength, body composition and health responses to the use of testosterone enanthate: a double blind study, J. Sci. Med. Sport, 1999, 2, 341–355 CrossrefGoogle Scholar

  • [7] Rogerson S., Weatherby R.P., Deakin G.B., Meir R.A., Coutts R.A., Zhou S., et al., The effect of short-term use of testosterone enanthate on muscular strength and power in healthy young men, J. Strength Cond. Res., 2007, 21, 354–361 Google Scholar

  • [8] van Marken Lichtenbelt W.D., Hartgens F., Vollaard N.B., Ebbing S., Kuipers H., Bodybuilders’ body composition: effect of nandrolone decanoate, Med. Sci. Sports. Exerc., 2004, 36, 484–489 Google Scholar

  • [9] Berning J.M., Adams K.J., Stamford B.A., Anabolic steroid usage in atheletics: fact, fiction, and public relations, J. Strength Cond. Res., 2004, 18, 908–917 Google Scholar

  • [10] Yesalis C.E., Use of steroids for self-enhancement: an epidemiologic/societal perspective, AIDS Read., 2001, 11, 157–160 Google Scholar

  • [11] Shah K., Montoya C., Persons R., Do testosterone injections increase libido for elderly hypogonadal patients?, J. Fam. Pract., 2007, 56, 301–305 Google Scholar

  • [12] Johnston L.D., O’Malley P.M., Bachman J.G., Schulenberg J.E., Monitoring the future national results on adolescent drug use: Overview of Key Findings, 2005, (NIH Publication No. 06-5882), National Institute on Drug Abuse, Bethesda, 2006 Google Scholar

  • [13] Drug Enforcement Administration, ARCOS Data for Selected Opioid Analgesics, 1980–1996, Arlington, US Dept of Justice, 1997 Google Scholar

  • [14] Yesalis C., Kennedy N., Kopstein A., Bahrke M., Anabolic-androgenic steroid use in the United States, JAMA, 1993, 270, 1217–1221 CrossrefGoogle Scholar

  • [15] Hameed A., Brothwood T., Bouloux P., Delivery of testosterone replacement therapy, Curr. Opin. Invest. Drugs, 2003, 4, 1213–1219 Google Scholar

  • [16] Snyder P.J., Lawrence D.A., Treatment of male hypogonadism with testosterone enanthate, J. Clin. Endocrinol. Metab., 1980, 51, 1335–1339 http://dx.doi.org/10.1210/jcem-51-6-1335CrossrefGoogle Scholar

  • [17] Ajayi A.A.L., Mathur R., Halushka P.V., Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses, Circulation, 1994, 91, 2742–2747 Google Scholar

  • [18] Bross R., Javanbakht M., Bhasin S., Anabolic interventions for aging associated Sarcopenia, J. Clin. Endocrinol. Metab., 1999, 84, 3420–3430 CrossrefGoogle Scholar

  • [19] Kuhn C.M., Anabolic Steroids, Recent. Prog. Horm. Res., 2002, 57, 411–434 CrossrefGoogle Scholar

  • [20] Pardridge W., Serum bioavailability of sex steroid hormones, Clin. Endocrinol. Metab., 1986, 15, 259–278 CrossrefGoogle Scholar

  • [21] Rannevik G., Jeppsson S., Johnell O., Bjerre B., Laurell-Borulf Y., Svanberg L., A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density, Maturitas, 1995, 21, 103–113 CrossrefGoogle Scholar

  • [22] Wilson J., Androgen abuse by athletes, Endocr. Rev., 1988, 9, 181–199 CrossrefGoogle Scholar

  • [23] Bartsch W., Anabolic steroids: action on cellular level, In: Kopera H. (Ed.) Anabolic androgenic steroids towards the year 2000, Blackwell, Vienna, 1993 Google Scholar

  • [24] Creutzberg E., Schols A., Anabolic steroids, Curr. Opin. Clin. Nutr. Metab. Care, 1999, 2, 243–253 CrossrefGoogle Scholar

  • [25] Horton R., Markers of peripheral androgen action in vivo and in vitro, Clin. Dermatol., 1988, 6, 46–51 CrossrefGoogle Scholar

  • [26] Falkenstein E., Tillmann H.-C., Christ M., Feuring M., Wehling M., Multiple Actions of Steroid Hormones-A Focus on Rapid, Nongenomic Effects, Pharmacol. Rev., 2000, 52, 513–556 Google Scholar

  • [27] Beato M., Gene regulation by steroid hormones, Cell, 1989, 56, 335–344 CrossrefGoogle Scholar

  • [28] Beato M., Klug J., Steroid hormone receptors: An update, Hum. Reprod. Update, 2000, 6, 225–236 CrossrefGoogle Scholar

  • [29] Scheidereit C., Geisse S., Westphal H., Beato M., The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumor virus, Nature (Lond.), 1983, 304, 749–752 CrossrefGoogle Scholar

  • [30] Beato M., Chavez S., Truss M., Transcriptional regulation by steroid hormones, Steroids, 1996, 61, 240–251 CrossrefGoogle Scholar

  • [31] Kindler S., Wang H., Richter D., Tiedge H., RNA transport and local control of translation, Ann. Rev. Cell Dev. Biol., 2005, 21, 223–245 CrossrefGoogle Scholar

  • [32] Godowski P., Picard D., Steroid receptors. How to be both a receptor and a transcription factor, Biochem. Pharmacol., 1989, 38, 3135–3143 CrossrefGoogle Scholar

  • [33] Chang C., Saltzman A., Yeh S., Young W., Keller E., Lee H., et al., Androgen receptor: an overview, Crit. Rev. Eukaryotic Gene. Expr., 1995, 5, 97–125 CrossrefGoogle Scholar

  • [34] Wilson J., Androgens, In: Hardman J., Limbird L. (Eds.), Goodman and Gilman’s the pharmacological basis of therapeutics, 9th ed., McGraw-Hill, New York, 1996 Google Scholar

  • [35] Boonyaratanakornkit V., Edwards D., Receptor mechanisms mediating non-genomic actions of sex steroids, Semin. Reprod. Med., 2007, 25, 139–153 CrossrefGoogle Scholar

  • [36] Wunderlich F., Benten W., Lieberherr M., Guo Z., Stamm O., Wrehlke C., et al., Testosterone signaling in T cells and macrophages, Steroids, 2002, 67, 535–538 CrossrefGoogle Scholar

  • [37] Kovacs W., Olsen N., Androgen receptors in human thymocytes, J. Immunol., 1987, 139, 490–493 Google Scholar

  • [38] Benten W.P.M., Lieberherr M., Giese G., Wrehlke C., Sekeris C.E., Mossmann H., et al., Functional testosterone receptors in plasma membranes of T cells, FASEB, 1999, 13, 123–133 Google Scholar

  • [39] Machelon V., Nome F., Tesarik J., Nongenomic effects of androstenedione on human granulosa cells in relation to luteinization process, J. Clin. Endocrinol. Metab., 1998, 83, 263–269 CrossrefGoogle Scholar

  • [40] Gametchu B., Watson C., Pasko D., Size and steroid binding characterisation of membrane associated glucocorticoid receptor in S49 lymphoma cells, Steroids, 1991, 56, 411–419 CrossrefGoogle Scholar

  • [41] Wehling M., Specific, nongenomic actions of steroid hormones, Annu. Rev. Physiol., 1997, 59, 365–393 CrossrefGoogle Scholar

  • [42] Farnsworth W., The prostate plasma membrane as an androgen receptor, Membr. Biochem., 1990 9, 141–162 CrossrefGoogle Scholar

  • [43] Sheridan P., Can a single androgen receptor fill the bill?, Mol. Cell Endocrinol., 1991, 76, C39–C45 CrossrefGoogle Scholar

  • [44] Lieberherr M., Grosse B., Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein, J. Biol. Chem., 1994, 269, 7217–7223 Google Scholar

  • [45] Hurd R., Testosterone, US National Library of Medicine and National Institutes of Health, Bethesda, 2006 Google Scholar

  • [46] Mutzebaugh C., Does the choice of alpha-AAS really make a difference?, HIV Hotline, 1998, 8, 10–11 Google Scholar

  • [47] Yamamoto Y., Moore R., Hess H., Guo G., Gonzalez F., Korach K., et al., Estrogen receptor alpha mediates 17alpha-ethynylestradiol causing hepatotoxicity, J. Biol. Chem., 2006, 281, 16625–16631 Google Scholar

  • [48] Brodsky I., Balagopal P., Nair K., Effects of testosterone replacement on muscle mass and muscle protein synthesis in hypogonadal men—a clinical research center study, J. Clin. Endocrinol. Metab., 1996, 81, 3469–3475 Google Scholar

  • [49] Joumaa W.H., Leoty C., Differential effects of nandrolone decanoate in fast and slow rat skeletal muscles, Med. Sci. Sports Exerc., 2001, 33, 397–403 CrossrefGoogle Scholar

  • [50] Sinha-Hikim I., Artaza J., Woodhouse L., Gonzalez-Cadavid N., Singh A., Lee M., et al., Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy, Am. J. Physiol. Endocrinol. Metab., 2002, 283, E154–E164 Google Scholar

  • [51] Berger J., Pall L., Hall C., Simpson D., Berry P, Dudley R., Oxandrolone in AIDS-wasting myopathy, AIDS, 1996, 10, 1657–1662 CrossrefGoogle Scholar

  • [52] Hughes T.K., Fulep E., Juelich T., Smith E.M., Stanton G.J., Modulation of immune responses by anabolic androgenic steroids, Int. J. Immunopharmacol., 1995, 17, 857–863 CrossrefGoogle Scholar

  • [53] Aribarg A., Sukcharoen N., Chanprasit Y., Ngeamvijawat J., Kriangsinyos R., Suppression of spermatogenesis by testosterone enanthate in Thai men, J. Med. Assoc. Thai.,1996, 79, 624–629 Google Scholar

  • [54] Matsumoto A., Effects of chronic testosterone administration in normal men: safety and efficacy of high dosage testosterone and parallel dose-dependent suppression of luteinizing hormone, follicle-stimulating hormone, and sperm production, J. Clin. Endocrinol. Metab., 1990, 70, 282–287 CrossrefGoogle Scholar

  • [55] Ballal S., Domoto D., Polack D., Marciulonis P., Martin K., Androgens potentiate the effects of erythropoietin in the treatment of anemia of endstage renal disease, Am. J. Kidney Dis., 1991, 17, 29–33 CrossrefGoogle Scholar

  • [56] Berns J., Rudnick M., Cohen R., Androgens potentiate the effects of erythropoietin in the treatment of anemia of end-stage renal disease, Am. J. Kidney Dis., 1991, 18, 143 CrossrefGoogle Scholar

  • [57] Berns J., Rudnick M., Cohen R., A controlled trial of recombinant human erythropoietin and nandrolone decanoate in the treatment of anemia in patients on chronic hemodialysis, Clin. Nephrol., 1992, 37, 264–267 Google Scholar

  • [58] Wu F., Farley T., Peregoudov A., Waites G., Effects of testosterone enanthate in normal men: experience from a multicenter contraceptive efficacy study. World Health Organization Task Force on Methods for the Regulation of Male Fertility, Fertil. Steril., 1996, 65, 626–636 CrossrefGoogle Scholar

  • [59] Bhasin S., Storer T., Berman N., Callegari C., Clevenger B., Phillips J., et al., The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men, N. Engl. J. Med., 1996, 335, 1–7 CrossrefGoogle Scholar

  • [60] Calfee R., Fadale P., Popular ergogenic drugs and supplements in young athletes, Pediatrics, 2006, 117, 577–589 CrossrefGoogle Scholar

  • [61] Velazquez I., Alter B., Androgens and liver tumors: Fanconi’s anemia and non-Fanconi’s conditions, Am. J. Hematol., 2004, 77, 257–267 CrossrefGoogle Scholar

  • [62] Strauss R., Yesalis C., Anabolic steroids and the athlete, Annu. Rev. Med., 1991, 42, 449–457 CrossrefGoogle Scholar

  • [63] Bagatell C., Knopp R., Vale W., Rivier J., Bremner W., Physiologic testosterone levels in normal men suppress high-density lipoprotein cholesterol levels, Ann. Intern. Med., 1992, 116, 967–973 CrossrefGoogle Scholar

  • [64] De Piccoli B., Giada F., Benettin A., Sartori F., Piccolo E., Anabolic steroid use in body builders: an echocardiographic study of left ventricle morphology and function, Int. J. Sports Med., 1991, 12, 408–412 CrossrefGoogle Scholar

  • [65] Sullivan M., Martinez C., Gallagher E., A trial fibrillation and anabolic steroids, J. Emerg. Med., 1999, 17, 851–857 Google Scholar

  • [66] Dickerman R., Schaller F., McConathy W., Left ventricular wall thickening does occur in elite power athletes with or without anabolic steroid use, Cardiology, 1998, 90, 145–148 CrossrefGoogle Scholar

  • [67] Palacios A., McClure R., Campfield A., Swerdloff R., Effect of testosterone enanthate on testis size, J. Urol., 1981, 126, 46–48 Google Scholar

  • [68] Alén M., Androgenic steroid effects on liver and red cells, J. Sports Med., 1985, 19, 15–20 Google Scholar

  • [69] Marcus R., Korenman S., Estrogens and the human male, Annu. Rev. Med., 1976, 27, 357–370 CrossrefGoogle Scholar

  • [70] Hartgens F., Kuipers H., Effects of androgenicanabolic steroids in athletes, Sports Med., 2004, 34, 513–554 CrossrefGoogle Scholar

  • [71] Manikkam M., Crespi E., Doop D., Herkimer C., Lee J., Yu S., et al., Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep, Endocrinology, 2004, 145, 790–798 CrossrefGoogle Scholar

  • [72] Corrigan B., Anabolic steroids and the mind, MJA, 1996, 165, 222–226 Google Scholar

  • [73] Midgley S., Heather N., Davies J., Levels of aggression among a group of anabolic-androgenic steroid users, Med. Sci. Law., 2001, 41, 309–314 CrossrefGoogle Scholar

  • [74] Casavant M., Blake K., Griffith J., Yates A., Copley L., Consequences of use of anabolic androgenic steroids, Pediatr. Clin. North Am., 2007, 54, 677–690 CrossrefGoogle Scholar

  • [75] Medras M., Tworowska U., Treatment strategies of withdrawal from long-term use of anabolicandrogenic steroids, Pol. Merkur. Lekarski, 2001, 11, 535–538 Google Scholar

  • [76] Kruisbeek A.M., Development of alphabeta T cells, Curr. Opin. Immunol., 1993, 5, 227–234 CrossrefGoogle Scholar

  • [77] Abbas A.K., Murphy K.M., Sher A., Functional diversity of helper T lymphocytes, Nature, 1996, 383, 787–793 CrossrefGoogle Scholar

  • [78] Springer T.A., Adhesion receptors of the immune system, Nature, 1990, 6, 425–434 CrossrefGoogle Scholar

  • [79] Mosmann T.R., Coffman R.L., TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties, Annu. Rev. Immunol., 1989, 7, 145–173 CrossrefGoogle Scholar

  • [80] Alam R., A brief review of the immune system, Prim. Care, 1998, 25, 727–738 CrossrefGoogle Scholar

  • [81] Medana I.M., Gallimore A., Oxzenius A., Martinic M.M., Wekerle H., Neumann H., MHC class I —restricted killing of neurons by virus-specific CD8+T lymphocytes is effected through the Fas/FasL, but not the perforin pathway, Eur. J. Immunol., 2000, 30, 3623–3633 CrossrefGoogle Scholar

  • [82] Sutton B.J., Immunoglobulin structure and function: the interaction between antibody and antigen, Curr. Opin. Immunol., 1989, 2, 106–113 CrossrefGoogle Scholar

  • [83] Fanning L.J., Connor A.M., Wu G.E., Development of the immunoglobulin repertoire, Clin. Immunol. Immunopathol., 1996, 79, 1–14 CrossrefGoogle Scholar

  • [84] Ward E.S., Ghetie V., The effector function of immunoglobulins: implications for therapy, Ther. Immunol., 1995, 2, 77–94 Google Scholar

  • [85] Clark M.R., IgG effector mechanisms, Chem. Immunol., 1997, 65, 88–110 Google Scholar

  • [86] Hamerman J.A., Ogasawara K., Lainer L.L., NK cells in innate immunity, Curr Opin. Immunol., 2005, 17, 29–35 CrossrefGoogle Scholar

  • [87] Farag S.S., Fehniger T.A., Ruggeri L., Velardi A., Caligiuri M.A., Natural killer cell receptors: new biology and insights into the graft-versus-leukaemia effect, Am. Soc. Hematol., 2002, 100, 1935–1947 Google Scholar

  • [88] Viver E., Tomasello E., Baratin M., Walzer T., Ugolini S., Functions of natural killer cells, Nature Immunol., 2008, 9, 503–510 CrossrefGoogle Scholar

  • [89] Cooper M.A., Bush J.E., Fehniger T.A., VanDeusen J.B., Waite R.E., Liu Y., et al., In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells, Blood, 2002, 100, 3633–3638 CrossrefGoogle Scholar

  • [90] Freud A.G., Caligiuri M.A., Human Natural Killer cell development, Immunol. Rev., 2006, 214, 56–72 CrossrefGoogle Scholar

  • [91] Scott G.B., Meade J.L., Cook G.P., Profiling killers; unravelling the pathways of human natural killer cell function, Brief Funct. Genomic Proteomic, 2008, 7, 8–16 Google Scholar

  • [92] Dinarello C.A., Proinflammatory Cytokines, Chest, 2000, 118, 503–508 CrossrefGoogle Scholar

  • [93] Opal S.M., DePalo V.A., Anti-inflammatory cytokines, Chest, 2000, 117, 1162–1172 CrossrefGoogle Scholar

  • [94] Grossman C.J., Regulation of the immune system by sex steroids, Endocr. Rev., 1984, 5, 435–455 CrossrefGoogle Scholar

  • [95] Grossman C.J., Interactions between gondal steroids and the immune system, Science, 1985, 227, 257–261 CrossrefGoogle Scholar

  • [96] Grossman C.J., Roselle G.A., The control of immune response by endocrine factors and the clinical significance of such regulation, Prog. Clin. Biochem. Med., 1987, 4, 1–56 Google Scholar

  • [97] Sthoeger Z.M., Chiorazzi N., Lahita R.G., Regulation of the immune response by sex hormones: I. In vitro effects of estradiol and testosterone on pokeweed mitogen-induced human B cell differentiation, J. Immunol., 1988, 141, 91–98 Google Scholar

  • [98] Abraham A., Bug G., 3H-testosterone distribution and binding in rat thymus cells in vivo, Mol. Cell Biochem., 1976, 13, 157–163 CrossrefGoogle Scholar

  • [99] Besedovsky H.O., Del Rey A., Immune-Neuro-Endocrine Interactions: Facts and Hypotheses, Endocr. Rev., 1996, 17, 64–102 CrossrefGoogle Scholar

  • [100] Landmann R., Wesp M., Box R., Keller U., Buhler F., Distribution and function of beta-adrenergic receptors in human blood lymphocytes, In: Hadden J., Masek K., Nistico G. (Eds.), Interactions among CNS, Neuroendocrine and Immune Systems, Pythagora Press, Rome, 1989 Google Scholar

  • [101] Deschaux P., Paucod J.-C., Ardail D., Interaction between thymosin, testosterone and estradiol on natural killer cell activity in mice, Tohoku J. Exp. Med., 1982, 136, 367–372. Google Scholar

  • [102] Fujii H., Nawa Y, Tsuchiya H., Matsuno K., Fukumoto T,. Fukuda S., et al., Effect of a single administration of testosterone on the immune response and lymphoid tissues in mice, Cell. Immunol., 1975, 20, 315–326 CrossrefGoogle Scholar

  • [103] Mendenhall C.L., Grossman C.J., Roselle G.A., Hertelendy Z., Ghosn S.J., Lamping K., et al., Anabolic Steroid Effects on Immune Function: Differences between analogues, J. Steroid Biochem. Molec. Biol., 1990, 37, 71–76 CrossrefGoogle Scholar

  • [104] Kotani M., Nawa Y., Fujii H., Inhibition by testosterone of immune reactivity and of lymphoid regeneration in irradiated and marrow reconstituted mice, Experientia, 1974, 30, 1343–1345 CrossrefGoogle Scholar

  • [105] Weinstein Y., Berkovich Z., Testosterone effect on bone marrow, thymus and suppressor T cells in the (NZB x NZW) F1 mice: its relevance to autoimmunity, J. Immunol., 1981, 1126, 998–1002 Google Scholar

  • [106] Deschaux P., Ulrich T., Goldstein A.L., In vitro effects of thymosin, testosterone and growth hormone on antibody formation in murine spleen cells, Thymus, 1, 287–291 Google Scholar

  • [107] Malcolmson C., Satra C., Kantaria S., Sidhu A., Lawrence M.J., Effect of oil on the level of solubilization of testosterone propionate into oil-in-water microemulsions, J. Pharm. Sci., 1997, 87, 109–116 Google Scholar

  • [108] Cummings E.A., Salisbury S.R., Givner M.L., Rittmaster R.S., Testolactone-associated high androgen levels, a pharmacologic effect or a laboratory artefact?, J. Clin. Endocrinol. Metab., 1998, 83, 784–787 Google Scholar

  • [109] Rogol A.D., Yesalis C.E., Anabolic-androgenic steroids and athletes: what are the issues?, J. Clin. Endocrinol. Metab., 1992, 74, 465–469 CrossrefGoogle Scholar

  • [110] Bouman A., Jan Heineman M., Fass M.M., Sex hormones and the immune response in humans, Hum. Reprod. Update, 2005, 11, 411–423 CrossrefGoogle Scholar

  • [111] Lahita R.G., Sex steroids and rheumatic disease, Arthritis Rheum., 1985, 28, 121–126 CrossrefGoogle Scholar

  • [112] Hirota Y., Suzuki T., Chayano Y., Bito Y., Humoral immune responses characteristic of testosterone-propionate-treated chickens, Immunology, 1976, 30, 341–348 Google Scholar

  • [113] Olsen N.J., Kovacs W.J., Gonadal steroids and immunity, Endocr. Rev., 1996, 17, 369–384 Google Scholar

  • [114] Paavonen T., Hormonal regulation of immune responses, Ann. Med., 1994, 26, 255–258 CrossrefGoogle Scholar

  • [115] Schuurs A.H., Verheul A.M., Schot L., Experimental work with anabolics in autoimmunity models, Acta Physiol., 1985, 271, 97–107 Google Scholar

  • [116] Schuurs A.H., Verheul H.A.M., Effects of gender and sex steroids on the immune response, J. Steroid Biochem., 1990, 35, 157–172 CrossrefGoogle Scholar

  • [117] Calabrese L.H., Kleiner S.M., Barna B.P., Skibinski C.I, Kirkendall D.T., Lahita R.G., et al., The effects of anabolic steroids and strength training on the human immune response, Med. Sci. Sport Exerc., 1989, 21, 386–392 Google Scholar

  • [118] Siiteri P., Stites D., Immunologic and endocrine interrelationships in pregnancy, Biol. Reprod., 1982, 26, 1–14 CrossrefGoogle Scholar

  • [119] Siiteri P.K., Jones L.A., Roubinian J.R., Talal N.K., Sex steroids and the immune system: I. Sex difference in autoimmune disease in NZB/NZW hybrid mice, J. Steroid Biochem., 1980, 12, 425–432 CrossrefGoogle Scholar

  • [120] Sulke A.N., Jones D.B., Wood P.J., Hormonal modulation of human natural killer cell activity in vitro, J. Reprod Immunol., 1985, 7, 105–110 CrossrefGoogle Scholar

  • [121] Wyle F., Kent J., Immunosuppresion by sex steroid hormones. I. The effect upon PHA and PPD stimulated lymphocytes, Clin. Exp. Immunol., 1977, 27, 407–415 Google Scholar

  • [122] Kanda N., Tsuchida T., Tamaki K., Testosterone inhibits immunoglobulin production by human peripheral blood mononuclear cells, Clin. Exp. Immunol., 1996, 106, 410–415 CrossrefGoogle Scholar

  • [123] Olsen N., Kovacs W., Effects of androgens on T and B lymphocyte development, Immunol. Res., 2001, 23, 281–288 CrossrefGoogle Scholar

  • [124] Hinterberger W., Vierhapper H., Anabolic steroids and blood cell production, Wien Med. Wochenschr., 1993, 143, 380–382 Google Scholar

  • [125] Hervey G., Hutchinson I., Knibbs A., Burkinshaw L., Jones P., Norgan N., et al., “Anabolic” effects of methandienone in men undergoing athletic training, Lancet, 1976, 2, 699–702 CrossrefGoogle Scholar

  • [126] Hervey G., Knibbs A., Burkinshaw L., Morgan D., Jones P., Chettle D., et al., Effects of methandienone on the performance and body composition of men undergoing athletic training, Clin. Sci. (Lond.), 1981, 60, 457–461 CrossrefGoogle Scholar

  • [127] Johnson L., Roundy E., Allsen P., Fisher A., Silvester L., Effect of anabolic steroid treatment on endurance, Med. Sci. Sports., 1975, 7, 287–289 Google Scholar

  • [128] Stromme S., Meen H., Aakvaag A., Effects of an androgenic-anabolic steroid on strength development and plasma testosterone levels in normal males, Med. Sci. Sports, 1974, 6, 203–208 Google Scholar

  • [129] Win-May M., Mya-Tu M., The effect of anabolic steroids on physical fitness, J. Sports Med. Phys. Fitness, 1975, 15, 266–271 Google Scholar

  • [130] Alén M., Reinilä M., Vihko R., Response of serum hormones to androgen administration in power athletes, Med. Sci. Sports Exerc., 1985, 17, 354–359 Google Scholar

  • [131] Hartgens F., Hamulyak K., Pernot C., Willems S.M., Effects of high doses androgenic-anabolic steroids on haematoglic parameters in bodybuilders, In: 8th FIMS European Sports Medicine Congress, Granada, 1995 Google Scholar

  • [132] Callewaert D.M., Moudgil V.K., Radcliff G., Waite R., Hormone specific regulation of natural killer cells by cortisol: Direct inactivation of the cytotoxic function of cloned human NK cells without an effect on cellular proliferation, FEBS Lett., 1991, 285, 108–110 CrossrefGoogle Scholar

  • [133] Marshall-Gradisnik S., Rogerson S., Zhou S., Coutts R., Meir R. Deakin G., et al., A reduction in natural killer cell cytotoxic activity after six weeks of testosterone administration, J. Exerc. Sci. Fitness., 2008, 6, 142–151 Google Scholar

  • [134] Zajac A., Jarzabek R., Waskiewicz Z., The diagnostic value of the 10- and 30-second Wingate test for competitive athletes, J. Strength Cond. Res., 1999, 13, 16–19 Google Scholar

  • [135] Huber S., Job L., Auld K., Influence of sex hormones on Coxsackie B-3 virus infection in Balb/c mice, Cell. Immunol., 1982, 67, 173–189 Google Scholar

  • [136] Araneo B.A., Dowell T., Diegel M., Daynes R.A., Dihydrotestosterone exerts a depressive influence on the productioni of interleukin-4 (IL-4), IL-5, and gamma interferon, but not IL-2 by activated murine T cells, Blood, 1991, 78, 688–699 Google Scholar

  • [137] Shephard R.J, Rhind S., Shek P.N., Exercise and the immune system: natural killer cells, interleukins and related responses, Sports Med., 1994, 18, 340–369 CrossrefGoogle Scholar

  • [138] Suzuki R., Handa K., Itoh K., Kumagai K., Natural killer cells (NK) as a responder to interleukin-2 (IL-2), I: proliferative response and establishment of cloned cells, J. Immunol., 1983, 130, 981–987 Google Scholar

  • [139] Graham H., Douglas R., Ryan P., Stress and acute respiratory infection, Am. J. Epidemiol., 1986, 124, 389–401 CrossrefGoogle Scholar

  • [140] Nagao F., Suzuki M., Taeda K., Yagita H., Okumura K., Mobilisation of NK cells by exercise: down modulation of adhesion molecules on NK cells by catecholamines, Am. J. Physiol., 2000, 289, R1251–R1256 Google Scholar

  • [141] Nagler A., Lainer L., Phillips J., Constitutive expression of high affinity IL-2 receptors on human CD16 natural killer cells in vivo, J. Exp. Med., 1990, 171, 1527–1533 Google Scholar

  • [142] Menard C., Harlan R., Up-regulation of androgen receptor immunoreactivity in the rat brain by androgenic-anabolic steroids, Brain Res., 1993, 622, 226–236 CrossrefGoogle Scholar

  • [143] Hughes T.K., Rady P.L., Smith E.M., Potential for the effects of anabolic steroid abuse in the immune and neuroendocrine axis, J. Neuroimmunol., 1998, 83, 162–167 Google Scholar

  • [144] World Anti-Doping Agency. The World Anti-Doping Code, The 2008 prohibited list, 2008, http://www.wada-ama.org/rtecontent/document/2008_List_En.pdf Google Scholar

  • [145] Kicman A.T., Pharmacology of anabolic steroids, Br. J. Pharmacol., 2008, 154, 502–521 Google Scholar

About the article

Published Online: 2009-01-31

Published in Print: 2009-03-01

Citation Information: Open Life Sciences, Volume 4, Issue 1, Pages 19–33, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-008-0058-x.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Robert D. Kersey, Diane L. Elliot, Linn Goldberg, Gen Kanayama, James E. Leone, Mike Pavlovich, and Harrison G. Pope
Journal of Athletic Training, 2012, Volume 47, Number 5, Page 567
Epidemiology and Infection, 2015, Volume 143, Number 01, Page 132
Torrey A. Boland, Declan McGuone, Jenelle Jindal, Marcelo Rocha, Melissa Cumming, Charles E. Rupprecht, Taciana Fernandes Souza Barbosa, Rafael de Novaes Oliveira, Catherine J. Chu, Andrew J. Cole, Ivanete Kotait, Natalia A. Kuzmina, Pamela A. Yager, Ivan V. Kuzmin, E. Tessa Hedley-Whyte, Catherine M. Brown, and Eric S. Rosenthal
Annals of Neurology, 2014, Volume 75, Number 1, Page 155
Laxmi S. Inamdar (Doddamani) and Y. Jayamma
The Journal of Steroid Biochemistry and Molecular Biology, 2012, Volume 129, Number 3-5, Page 172
Stephen Grant, Jonathan Dearing, Sujoy Ghosh, Andrew Collier, and Abhijit M. Bal
International Journal of Infectious Diseases, 2010, Volume 14, Number 9, Page e823
Dimitrios D. Nikolopoulos, Chara Spiliopoulou, and Stamatios E. Theocharis
Fundamental & Clinical Pharmacology, 2011, Volume 25, Number 5, Page 535
Bodo C Melnik
Current Opinion in Endocrinology, Diabetes and Obesity, 2009, Volume 16, Number 3, Page 218
Sefa Lok, Erdal Tasgin, Nagehan Demir, and Mehmet Ozdemir
Journal of Animal and Veterinary Advances, 2010, Volume 9, Number 18, Page 2343

Comments (0)

Please log in or register to comment.
Log in