Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 4, Issue 3

Issues

Volume 10 (2015)

Biological evaluation of 10-(diphenylmethylene)- 4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives

Joanna Stefańska / Anna Bielenica / Marta Struga / Stafan Tyski
  • Department of Pharmaceutical Microbiology, Medical University of Warsaw, 02-007, Warsaw, Poland
  • Department of Antibiotics and Microbiology, National Medicines Institute, 00-725, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jerzy Kossakowski / Roberta Loddo / Cristina Ibba / David Collu / Esther Marongiu / Paolo Colla
Published Online: 2009-07-26 | DOI: https://doi.org/10.2478/s11535-009-0015-3

Abstract

Antibacterial and antifungal activity of 10-(diphenylmethylene)-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives were examined by the disc-diffusion method (growth inhibition zone diameter in agar medium). The MIC’s for the most active agents were determined. Title compounds were also evaluated in vitro against representatives of different virus classes. Most of the tested compounds exhibit activity against CVB-2 virus.

Keywords: 10-(diphenylmethylene)-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives; Antibacterial; Antifungal and antiviral activity

  • [1] Furse K.E., Lybrand T.P., Three-dimensional models for beta-adrenergic receptor complexes with agonists and antagonists, J. Med. Chem., 2003, 46, 4450–4462 http://dx.doi.org/10.1021/jm0301437CrossrefGoogle Scholar

  • [2] Kulig K., Sapa J., Maciąg D., Filipek B., Malawska B., Synthesis and pharmacological evaluation of new 1-[3-(4-arylpiperazin-1-yl)-2-hydroxypropyl]-pyrrolidin-2-one derivatives with anti-arrhythmic, hypotensive, and alpha-adrenolytic activity, Arch. Pharm. (Weinheim), 2007, 340, 466–475 http://dx.doi.org/10.1002/ardp.200700039CrossrefGoogle Scholar

  • [3] Ferrarini P.L., Mori C., Badawneh M., Menera C., Saccomanni G., Calderone V., et al., Stereoselective synthesis and βblocking activity of substituted (E)-and (Z)-4(1H)-[1-(3-alkylamino-2-hydroxypropyl)oximino]-2,3-dihydro-1,8-naphthyridine. Potential anti-hypertensive agents. Part VI, Eur. J. Med. Chem., 1997, 32, 955–963 http://dx.doi.org/10.1016/S0223-5234(97)89639-0CrossrefGoogle Scholar

  • [4] Bartošova L., Frydrych M., Hulakova G., Berankova K., Strnadova V., Mokry P., et al., Efficacy of newly synthesized 44Bu ultrashort-acting beta-adrenergic antagonist to isoprenaline-induced tachycardia — comparison with esmolol, Acta Vet. Brno, 2004, 73, 171–179 CrossrefGoogle Scholar

  • [5] Cecchetti V., Schiaffella F., Tabarrini O., Fravolini A., (1,4-Benzothiazinyloxy)alkylpiperazine derivatives as potential antihypertensive agents, Bioorg. Med. Chem. Lett., 2000, 10, 465–468 http://dx.doi.org/10.1016/S0960-894X(00)00016-0CrossrefGoogle Scholar

  • [6] Handzlik J., Maciąg D., Kubacka M., Mogilski Sz., Filipek B., Stadnicka K., et al., Synthesis, alpha 1-adrenoceptor antagonist activity, and SAR study of novel arylpiperazine derivatives of phenytoin, Bioorg. Med. Chem., 2008, 16, 5982–5998 http://dx.doi.org/10.1016/j.bmc.2008.04.058CrossrefGoogle Scholar

  • [7] Chiang Ch.-H., Chang T.-J., Lu D.-W., Lee A.-R., Intraocular pressure lower effects of novel arylpiperazine derivatives, J. Ocular Pharmacol. Ther., 1998, 14, 313–322 http://dx.doi.org/10.1089/jop.1998.14.313CrossrefGoogle Scholar

  • [8] Caliendo G., Santagada V., Perissutti E., Fiorino F., Derivatives as 5HT1A receptor ligands-past and present, Curr. Med. Chem., 2005, 12, 1721–1753 http://dx.doi.org/10.2174/0929867054367220CrossrefGoogle Scholar

  • [9] Chilmonczyk Z., Mazgajska M., Iskra-Jopa J., Chojnacka-Wojcik E., Tatarczyńska E., Kłodzirska E., et al., Pharmacological properties and SAR of new 1,4-disubstituted piperazine derivatives with hypnotic-sedative activity, J. Pharm. Pharmacol., 2002, 54, 689–698 http://dx.doi.org/10.1211/0022357021778844CrossrefGoogle Scholar

  • [10] Di Santo R., Costi R., Artico M., Massa S., Ragno R., Marshall G.R., et al., Pharmacological properties and SAR of new 1,4-disubstituted piperazine derivatives with hypnotic-sedative activity, Bioorg. Med. Chem., 2002, 10, 2511–2526 http://dx.doi.org/10.1016/S0968-0896(02)00119-0CrossrefGoogle Scholar

  • [11] Kimura M., Masuda T., Hamada K., Kawakatsu N., Kubota N., Mitani M., et al., Antioxidative activities of novel diphenylalkyl piperazine derivatives with high affinities for the dopamine transporter, Bioorg. Med. Chem. Lett., 2004, 14, 4287–4290 http://dx.doi.org/10.1016/j.bmcl.2004.05.091CrossrefGoogle Scholar

  • [12] Filosa R., Peduto A., de Caprariis P., Saturnino C., Festa M., Petrella A., et al., Synthesis and antiproliferative properties of N3/8-disubstituted 3,8-diazabicyclo[3.2.1]octane analogues of 3,8-bis[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methylpiperazine, Eur. J. Med. Chem., 2007, 42, 293–306 http://dx.doi.org/10.1016/j.ejmech.2006.11.013CrossrefGoogle Scholar

  • [13] Shaw Y.-J., Yang Y.-T., Garrison J.B., Kyprianou N., Chen Ch.-S., Pharmacological exploitation of the alpha1-adrenoreceptor antagonist doxazosin to develop a novel class of antitumor agents that block intracellular protein kinase B/Akt activation, J. Med. Chem., 2004, 47, 4453–4462 http://dx.doi.org/10.1021/jm049752kCrossrefGoogle Scholar

  • [14] Lombardo L.J., Lee F.Y., Chen P., Norris D., Barrish J.C., Behnia K., et al., Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays, J. Med. Chem., 2004, 47, 6658–6661 http://dx.doi.org/10.1021/jm049486aGoogle Scholar

  • [15] Stefańska J., Struga M., Tyski S., Kossakowski J., Dobosz M., Antimicrobial activity of 2,4-dihydro-[1,2,4]triazol-3-one derivatives, Pol. J. Microbiol., 2008, 57, 179–182 Google Scholar

  • [16] Foroumadi A., Emami S., Hassanzadeh A., Rajaee M., Sokhanvar K., Moshafi M.H., et al., Synthesis and antibacterial activity of N-(5-benzylthio-1,3,4-thiadiazol-2-yl) and N-(5-benzylsulfonyl-1,3,4-thiadiazol-2-yl)piperazinyl quinolone derivatives, Bioorg. Med. Chem. Lett., 2005, 15, 4488–4492 http://dx.doi.org/10.1016/j.bmcl.2005.07.016CrossrefGoogle Scholar

  • [17] Richter S., Parolin C., Palumbo M., Palu G., Antiviral properties of quinolone-based drugs, Curr. Drug Target Infect Disord., 2004, 4, 111–116 http://dx.doi.org/10.2174/1568005043340920CrossrefGoogle Scholar

  • [18] Hadizadeh F., Mehrparvar A., Synthesis of some new 1-[2-(alkylthio-1-benzyl-5-imidazolyl) carbonyl]-4-[3-(isopropylamino)-2-pydridyl] piperazines as anti-HIV, J. Sci. Isl. Rep. Iran., 2004, 15, 131–134 Google Scholar

  • [19] Pinna G.A., Loriga G., Murineddu G., Grella G., Mura M., Vargiu L., et al., Synthesis and anti-HIV-1 activity of new delavirdine analogues carrying arylpyrrole moieties, Chem. Pharm. Bull., 2001, 49, 1406–1411 http://dx.doi.org/10.1248/cpb.49.1406CrossrefGoogle Scholar

  • [20] Kossakowski J., Wojciechowska A., Synthesis of oxiran-2-ylmethyl and oxiran-2-ylmethoxy derivatives of some 4-azatricyclo[5.2.1.0(2,6)]dec-8-ene-3,5-diones as potential beta-adrenolytics, Acta Pol. Pharm., 2006, 63, 485–490 Google Scholar

  • [21] Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Disc Susceptibility Tests; Approved Standard M2-A9. Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2006 Google Scholar

  • [22] Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard M7-A7. Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2006 Google Scholar

  • [23] Pauwels R., Balzarini J., Baba M., Snoeck R., Schols D., Herdewijn P., et al., Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds, J. Virol. Meth, 1988, 20, 309–321 http://dx.doi.org/10.1016/0166-0934(88)90134-6CrossrefGoogle Scholar

About the article

Published Online: 2009-07-26

Published in Print: 2009-09-01


Citation Information: Open Life Sciences, Volume 4, Issue 3, Pages 362–368, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0015-3.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ivan Malík, Jozef Csöllei, Josef Jampílek, Lukáš Stanzel, Iveta Zadražilová, Jan Hošek, Šárka Pospíšilová, Alois Čížek, Aidan Coffey, and Jim O’Mahony
Molecules, 2016, Volume 21, Number 10, Page 1274
[2]
R. Renjith, Y. Sheena Mary, C. Yohannan Panicker, Hema Tresa Varghese, Magdalena Pakosińska-Parys, C.Van Alsenoy, and T.K. Manojkumar
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, Volume 124, Page 480
[3]
Anna Bielenica, Jerzy Kossakowski, Marta Struga, Izabela Dybała, Paolo La Colla, Elena Tamburini, and Roberta Loddo
Medicinal Chemistry Research, 2011, Volume 20, Number 8, Page 1411

Comments (0)

Please log in or register to comment.
Log in