Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 4, Issue 3

Issues

Volume 10 (2015)

New approach in studies of microalgal cell lysis

Maja Berden-Zrimec / Jasmina Logar / Alexis Zrimec / Luka Drinovec / Mladen Franko / Alenka Malej
Published Online: 2009-07-26 | DOI: https://doi.org/10.2478/s11535-009-0018-0

Abstract

A new approach to the studies of the microalgal cell lysis by utilizing a combination of two complementary methods is presented. Delayed fluorescence (DF) is a measure of the living algal biomass, detecting only cells with active photosynthesis. Thermal lens spectrometry (TLS) detects the total pigment amount released from lysed cells. Both methods select for photosynthetic organisms, reducing possible background from other sources (e.g. heterotrophic bacteria, zooplankton, and abiotic substances). The DF/TLS method was tested with a laboratory Skeletonema costatum culture exposed to a geometric dilution series of the lysing factor poly- APS. The exposure resulted in similar EC50 values for DF intensity, TLS and dissolved esterase activity of 0.8±0.2, 1.77±0.35, and 1.25±0.1 mg poly-APS l−1, respectively. The combined DF/TLS method enabled a rapid evaluation of the living vs. dead cells without any sample pretreatment or manipulation.

Keywords: Phytoplankton; Cell lysis; Thermal lens spectrometry; Delayed fluorescence; Carotenoids; Photosynthesis

  • [1] Agusti S., Sanchez M.C., Cell viability in natural phytoplankton communities quantified by a membrane permeability probe, Limnol. Oceanogr., 2002, 47, 818–828 Google Scholar

  • [2] Berman T., Wynne D., Assessing phytoplankton lysis in Lake Kinneret, Limnol. Oceanogr., 2005, 50, 526–537 Google Scholar

  • [3] Veldhuis M.J.W., Kraay G.W., Timmermans K.R., Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth, Eur. J. Phycol., 2001, 36, 167–177 http://dx.doi.org/10.1080/09670260110001735318CrossrefGoogle Scholar

  • [4] Berges J.A., Falkowski P.G., Physiological stress and cell death in marine phytoplankton: Induction of proteases in response to nitrogen or light limitation, Limnol. Oceanogr., 1998, 43, 129–135 Google Scholar

  • [5] Riegman R., Van Bleijswijk J.D.L., Brussaard C.P.D., The use of dissolved esterase activity as a tracer of phytoplankton lysis — Comment, Limnol. Oceanogr., 2002, 47, 916–920 Google Scholar

  • [6] Agusti S., Alou E., Hoyer M.V., Frazer T.K., Canfield D.E., Cell death in lake phytoplankton communities, Freshw. Biol., 2006, 51, 1496–1506 http://dx.doi.org/10.1111/j.1365-2427.2006.01584.xCrossrefGoogle Scholar

  • [7] Baldi F., Minacci A., Saliot A., Mejanelle L., Mozetic P., Turk V., et al., Cell lysis and release of particulate polysaccharides in extensive marine mucilage assessed by lipid biomarkers and molecular probes, Mar. Ecol. - Progr. Ser., 1997, 153, 45–57 http://dx.doi.org/10.3354/meps153045CrossrefGoogle Scholar

  • [8] van Boekel W.H.M., Hansen F.C., Riegman R., Bak R.P.M., Lysis-induced decline of a Phaeocystis spring bloom and coupling with the microbial foodweb, Mar. Ecol. - Progr. Ser., 1992, 81, 269–276 http://dx.doi.org/10.3354/meps081269CrossrefGoogle Scholar

  • [9] Agusti S., Duarte C.M., Addressing uncertainties in the assessment of phytoplankton lysis rates in the sea — Comment, Limnol. Oceanogr., 2002, 47, 921–924 http://dx.doi.org/10.4319/lo.2002.47.3.0818CrossrefGoogle Scholar

  • [10] Stratton G.W., Huber A.L., Corke C.T., Effect of mercuric ion on the growth, photosynthesis, and nitrogenase activity of Anabaena inaequalis, Appl. Environ. Microbiol., 1979, 38, 537–543 Google Scholar

  • [11] Kozar-Logar J., Malej A., Franko M., On-line monitoring of diatom lysis by thermal lens spectrometry, J. Phys. IV, 2005, 125, 705–707 http://dx.doi.org/10.1051/jp4:2005125161CrossrefGoogle Scholar

  • [12] Kozar-Logar J., Malej A., Franko M., Double dual beam thermal lens spectrometer for monitoring of phytoplankton cell lysis, Instrum. Sci. Technolog., 2006, 34, 23–31 http://dx.doi.org/10.1080/10739140500374179CrossrefGoogle Scholar

  • [13] Berden-Zrimec M., Drinovec L., Zrimec A., Tisler T., Delayed fluorescence in algal growth inhibition tests, Cent. Eur. J. Biol., 2007, 2, 169–181 http://dx.doi.org/10.2478/s11535-007-0014-1CrossrefGoogle Scholar

  • [14] Katsumata M., Koike T., Nishikawa M., Kazumura K., Tsuchiya H., Rapid ecotoxicological bioassay using delayed fluorescence in the green alga Pseudokirchneriella subcapitata, Water Res., 2006, 40, 3393–3400 http://dx.doi.org/10.1016/j.watres.2006.07.016CrossrefGoogle Scholar

  • [15] Istvanovics V., Honti M., Osztoics A., Shafik H.M., Padisak J., Yacobi Y., et al., Continuous monitoring of phytoplankton dynamics in Lake Balaton (Hungary) using on-line delayed fluorescence excitation spectroscopy, Freshw. Biol., 2005, 50, 1950–1970 http://dx.doi.org/10.1111/j.1365-2427.2005.01442.xCrossrefGoogle Scholar

  • [16] Strehler B.L., Arnold W., Light production by green plants, J. Gen. Physiol., 1951, 34, 809–820 http://dx.doi.org/10.1085/jgp.34.6.809CrossrefGoogle Scholar

  • [17] Wiltshire K.H., Harsdorf S., Smidt B., Blocker G., Reuter R., Schroeder F., The determination of algal biomass (as chlorophyll) in suspended matter from the Elbe estuary and the German Bight: A comparison of high-performance liquid chromatography, delayed fluorescence and prompt fluorescence methods, J. Exp. Mar. Biol. Ecol., 1998, 222, 113–131 http://dx.doi.org/10.1016/S0022-0981(97)00141-XCrossrefGoogle Scholar

  • [18] Guillard R.R.L., Culture of phytoplankton for feeding marine invertebrates, In: Smith W.L., Chanley M.H. (Eds.), Culture of marine invertebrate animals, Plenum Press, New York, 1975 Google Scholar

  • [19] Sepcic K., Batista U., Vacelet J., Macek P., Turk T., Biological activities of aqueous extracts from marine sponges and cytotoxic effects of 3-alkylpyridinium polymers from Reniera sarai, Comp. Biochem. Physiol. C, Comp. Pharmacol. Toxicol., 1997, 117, 47–53 Google Scholar

  • [20] Kozar-Logar J., Development of laser spectroscopic techniques for characterisation and studies of phytoplankton pigments, PhD thesis, Polytechnic, School of Environmental Sciences, Nova Gorica, Slovenia, 2003 Google Scholar

  • [21] Jeffrey S.W., Mantoura R.F.C., Development of pigment methods for oceanography: SCOR supported working groups and objectives, In: Jeffrey S.W., Mantoura R.F.C., Wright S.W. (Eds.), Phytoplankton pigments in oceanography: guidelines to modern methods, UNESCO Publishing, Paris, 1997 Google Scholar

  • [22] Monti M., Zrimec A., Beran A., Berden-Zrimec M., Drinovec L., Kosi G., et al., Delayed luminescence of Prorocentrum minimum under controlled conditions, Harmful Algae, 2005, 4, 643–650 http://dx.doi.org/10.1016/j.hal.2004.08.013CrossrefGoogle Scholar

  • [23] Zrimec A., Drinovec L., Berden-Zrimec M., Influence of chemical and physical factors on longterm delayed fluorescence in Dunaliella tertiolecta, Electromagn. Biol. Med., 2005, 24, 309–318 http://dx.doi.org/10.1080/15368370500379970CrossrefGoogle Scholar

  • [24] Agusti S., Satta M.P., Mura M.P., Benavent E., Dissolved esterase activity as a tracer of phytoplankton lysis: Evidence of high phytoplankton lysis rates in the northwestern Mediterranean, Limnol. Oceanogr., 1998, 43, 1836–1849 Google Scholar

  • [25] Luterotti S., Franko M., Sikovec M., Bicanic D., Ultrasensitive assays of trans- and cis-betacarotenes in vegetable oils by high-performance liquid chromatography- thermal lens detection, Anal. Chim. Acta, 2002, 460, 193–200 http://dx.doi.org/10.1016/S0003-2670(02)00228-3CrossrefGoogle Scholar

  • [26] Yacobi Y.Z., Gerhardt V., Gonen-Zurgil Y., Sukenik A., Delayed fluorescence excitation spectroscopy: A rapid method for qualitative and quantitative assessment of natural population of phytoplankton, Water Res., 1998, 32, 2577–2582 http://dx.doi.org/10.1016/S0043-1354(98)00032-3CrossrefGoogle Scholar

About the article

Published Online: 2009-07-26

Published in Print: 2009-09-01


Citation Information: Open Life Sciences, Volume 4, Issue 3, Pages 313–320, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0018-0.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mladen FRANKO, Mingqiang LIU, Aleš BOŠKIN, Ambra DELNERI, and Mikhail A. PROSKURNIN
Analytical Sciences, 2016, Volume 32, Number 1, Page 23

Comments (0)

Please log in or register to comment.
Log in