Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 4, Issue 3


Volume 10 (2015)

Effects of γ-irradiation on antioxidant activity in soybean seeds

Dubravka Štajner / Boris Popović / Ksenija Taški
Published Online: 2009-07-26 | DOI: https://doi.org/10.2478/s11535-009-0019-z


There are some reports that low doses of γ-irradiation could induce antioxidant activities in plant material, including soybean. Irradiation, required for the inactivation of some pathogens and induction of mutations, may have adverse effects on sensorial, nutritional and antioxidant qualities. The effects of different γ-irradiation doses (100–200 Gy) on antioxidant properties of soybean seeds was investigated. In this study, we report the results obtained by analysis of antioxidant enzyme activities, reduced glutathione, malonyldialdehyde (MDA) and hydroxyl (HO−) radical quantities, soluble protein content, and total antioxidant activity in irradiated soybean seeds. Antioxidant enzyme activities were affected due to high irradiation intensity. Significant changes of total antioxidant activity and MDA and HO.quantities were observed only under the highest irradiation dose, with a 15.7% reduction in total antioxidant activity, MDA quantity increase of 21.6%, and HO− radical quantity increase of 79.3% compared to the non-irradiated control. The total soluble protein content increased slightly.

Keywords: γ-irradiation; Soybean; Antioxidant; Lipid peroxidation; Proteins

  • [1] Variyar, P.S., Limaye, A., Sharma, A. Radiation-Induced Enhancement of Antioxidant Contents of Soybean (Glycine max Merrill), J. Agric. Food. Chem., 2003, 52, 3385–3388 http://dx.doi.org/10.1021/jf030793jCrossrefGoogle Scholar

  • [2] Jain S.M., Brar, D.S., Ahloowalia B.S., Somaclonal Variation and Induced Mutation in Crop Improvement, Kluwer Academic Publishers, Great Britain, 1998, 203–218 Google Scholar

  • [3] Jamie H., Induced mutations: increasing agricultural quality and yield of tomato, Athena Science Research, 2002, 22, 132–145 Google Scholar

  • [4] Al-Rumaih M.M., Al-Rumaih M.M., Influence of Ionizing Radiation on Antioxidant Enzymes in Three Species of Trigonella, Am. J. Env. Sci., 2008, 4, 151–156 http://dx.doi.org/10.3844/ajessp.2008.151.156CrossrefGoogle Scholar

  • [5] Hajduch M., Debre F., Bohmova B., Petrova A., Effect of Different Mutagenic Treatments on Morphological Traits of M2 Generation of Soybean, Soybean Genetics Newsletter (on line journal), 1999, 26 Google Scholar

  • [6] Cheftel J.C., Cuq J.L., Lorient D., Amino acids, peptides, proteins, In: Fennema O.R. (Ed.), Food Chemistry, Marcel Dekker, New York, 1985, 279–334 Google Scholar

  • [7] Halliwell B., Gutteridge, J.M.C., Free radicals in Biology and Medicine, 2nd ed., Claredon press, Oxford, 1989 Google Scholar

  • [8] Štajner D, Popovic B.M., Miloševi, M., Irradiation effects on phenolic content, lipid and protein oxidation and scavenger ability of soybean seeds, Int. J. Mol. Sci., 2007, 8, 618–627 http://dx.doi.org/10.3390/i8070618CrossrefGoogle Scholar

  • [9] Cho Y., Song K.B., Effect of γ-irradiation on the molecular properties of BSA and β-lactoglobulin, J. Biochem. Mol. Biol, 2000, 33, 133–137 Google Scholar

  • [10] Quy Hai D., Kovacs K., Matkovics I., Matkovics B., Properties of enzymes X., Peroxidase and superoxide dismutase contents of plant seeds, Biochem. Physiol. Pflanzen (BPP), 1975, 167, 357–359 Google Scholar

  • [11] Misra H. P., Fridovics I.J., The role of superoxide anion in the autooxidation of epinephrine and a simple measurement for superoxide dismutase, J. Biol. Chem., 1972, 247, 3170–3175 Google Scholar

  • [12] Matkovics B., Novak R., Hahn H.D., Szabo L., Varga Sz.I., Zalesna G., A comparative study of some more important experimental animal peroxide metabolism enzymes, Comp. Biochem. Physiol., 1977, 56, 31–34 Google Scholar

  • [13] Simon L.M., Fatrai Z., Jonas D.E., Matkovics B., Study of metabolism enzymes during the development of Phaseolus vulgaris, Biochem. Physiol. Pflanzen (BPP), 1974, 166, 387–392 Google Scholar

  • [14] Chiu D.T.Y., Stults F.H., Tappel A.L., Purification and properties of rat lung soluble glutathione peroxidise, Biochim. Biophys. Acta, 1976, 445, 558–606 Google Scholar

  • [15] Sedlak J., Lindsay H., Estimation of total protein bound and non protein sulphydryl groups in tissue with Ellman’s reagent, Anal. Biochem, 1968, 25, 192–205 CrossrefGoogle Scholar

  • [16] Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248–253 http://dx.doi.org/10.1016/0003-2697(76)90527-3CrossrefGoogle Scholar

  • [17] Dhindsa R.S., Plumb-Dhindsa P, Thorpe T.A., Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase, J. Exp. Bot., 1981, 32, 93–101 http://dx.doi.org/10.1093/jxb/32.1.93CrossrefGoogle Scholar

  • [18] Cheesman K.H., Beavis A., Esterbaurer H., Hydroxyl radical induced iron catalyzed degradation of 2-deoxyribose, Biochem. J., 1988, 232, 649–653 Google Scholar

  • [19] Benzie I.F.F., Strain J.J., Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modifyd version for simultaneous measurement of total antioxidant power and ascorbic acid concentration, Methods Enzymol., 1999, 299, 15–27 http://dx.doi.org/10.1016/S0076-6879(99)99005-5CrossrefGoogle Scholar

  • [20] Stevens C., Wilson C.L., Lu J.Y., Khan V.A., Chalutz E., Droby S., et al., Plant hormesis induced by ultraviolet light-C for controlling postharvest diseases of tree fruits, Crop Protection, 1996, 15, 129–134 http://dx.doi.org/10.1016/0261-2194(95)00082-8CrossrefGoogle Scholar

  • [21] Calabrese E.J, Baldwin L.A., Hormesis: the dose-response revolution, Annu. Rev. Pharmacol. Toxicol., 2003, 43, 175–197 http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.140223CrossrefGoogle Scholar

  • [22] Chakravarty B., Sen S., Enhancement of regeneration potential and variability by γ -irradiation in cultured cells of Scilla indica, Biol. Plantarum, 2001, 44, 189–193 http://dx.doi.org/10.1023/A:1010282805522CrossrefGoogle Scholar

  • [23] Zaka R., Vandecasteele C.M., Misset M.T., Effects of low doses of ionizing irradiation on antioxidant enzymes and G6PDH activities in Stipa capillata (Poaceae), J. Exp. Bot., 2002, 53, 1979–1987 http://dx.doi.org/10.1093/jxb/erf041CrossrefGoogle Scholar

  • [24] Fan X., Thayer D.W., Sokorai K.J.B., Changes in Growth and Antioxidant status of Alfaalfa Sprouts during Sprouting as Affected by Gamma Irradiation of Seeds, J. Food Protect., 2004, 67, 561–566 Google Scholar

  • [25] Ling A.P.K., Chia J.Y., Hussein S., Harun A.R., Physiological Responses of Citrus sinensis to Gamma Irradiation, World Appl. Sci. J., 2008, 5, 12–19 Google Scholar

  • [26] Wada H., Koshiba T., Matsui T., Sato M., Involvement of peroxidase in differential sensitivity toγ-radiation in seedlings of two Nicotina species, Plant Sci., 1998, 132, 109–119 http://dx.doi.org/10.1016/S0168-9452(98)00005-3CrossrefGoogle Scholar

  • [27] Yang, T., Poovaiah B.W., Hydrogen peroxide homeostasis: Activation of plant catalase by calcium/calmodulin, Proc. Natl. Acad. Sci. USA, 2002, 99, 4097–4102 http://dx.doi.org/10.1073/pnas.052564899CrossrefGoogle Scholar

  • [28] Benzie, I.F.F., Strain, J.J., The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay, Anal. Biochem., 1996, 239, 70–76 http://dx.doi.org/10.1006/abio.1996.0292CrossrefGoogle Scholar

  • [29] Nawar W.W., Balboni J.J., Detection of irradiation treatment in foods, J. Am. Oil Chem. Soc., 1970, 53, 726–729 Google Scholar

About the article

Published Online: 2009-07-26

Published in Print: 2009-09-01

Citation Information: Open Life Sciences, Volume 4, Issue 3, Pages 381–386, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0019-z.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ahsan A. Kadhimi, Che Radziah Che Mohd Zain, Arshad Naji Alhasnawi, Anizan Isahak, Mehdi Farshad Ashraf, Azhar Mohamad, Febri Doni, and Wan Mohtar Wan Yusoff
Asian Journal of Crop Science, 2016, Volume 8, Number 2, Page 52
Jong-Il Choi and Jin-Kyun Kim
Journal of Plant Biotechnology, 2013, Volume 40, Number 3, Page 111
Sumira Jan, Talat Parween, T.O. Siddiqi, and Mahmooduzzafar
Journal of Environmental Radioactivity, 2012, Volume 113, Page 142
Sumira Jan, Talat Parween, T.O. Siddiqi, and Mahmooduzzafar
Environmental Reviews, 2012, Volume 20, Number 1, Page 17
Hossam S. El-Beltagi, Osama K. Ahmed, and Wael El-Desouky
Radiation Physics and Chemistry, 2011, Volume 80, Number 9, Page 968
Amina A. Aly and Hossam E. S. El-Beltagi
Grasas y Aceites, 2010, Volume 61, Number 3, Page 288

Comments (0)

Please log in or register to comment.
Log in