Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 4, Issue 3

Issues

Volume 10 (2015)

Obestatin as contractile mediator of excised frog heart

Iliyana Sazdova
  • Department Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1164, Sofia, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bilyana Ilieva
  • Department Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1164, Sofia, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ignat Minkov
  • Department Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1164, Sofia, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rudolf Schubert
  • Cardiovascular Physiology, Center for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, 68167, Mannheim, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hristo Gagov
  • Department Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1164, Sofia, Bulgaria
  • Institute of Biophysics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-07-26 | DOI: https://doi.org/10.2478/s11535-009-0023-3

Abstract

The aim of this study is to investigate the mechanism of positive inotropic effect of obestatin on in vitro heart preparations of Rana ridibunda frog. The application of increasing amounts of obestatin in the concentration range from 1 μmol/l to 1 μmol/l significantly enhances the force of contraction of excised and cannulated frog hearts. This effect was partially reduced in the presence of prazosin (3 μmol/l). Propranolol (30 μmol/l), pertussis toxin (2 ng/ml) and the specific inhibitor of cAMP-dependent protein kinase (PKA) Rp-adenosine 3′,5′-cyclic monophosphothioate triethylamine (30 μmol/l) completely blocked the obestatin-induced increase of the force of frog heart contractions. It is concluded that, via its receptor molecule, obestatin activates neuronal pertussis toxin sensitive G-protein(s) that further enhance the secretion of epinephrine from sympathetic neurons. This epinephrine activates mainly the myocardial β-adrenoreceptors and PKA downstream targets, and is responsible for the observed positive inotropic effect of obestatin. An alternative explanation of our data is that obestatin directly enhances the effect of myocardial β-adrenergic signaling.

Keywords: Obestatin; Cardiac; Hormone; Autonomic nervous system; In vitro; G-protein

  • [1] Zhang J.V., Ren P.G., Avsian-Kretchmer O., Luo C.W., Rauch R., Klein C., et al., Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake, Science, 2005, 310, 996–999 http://dx.doi.org/10.1126/science.1117255CrossrefGoogle Scholar

  • [2] Kojima M., Hosoda H., Date Y., Nakazato M., Matsuo H., Kangawa, K., Ghrelin is a growth-hormonereleasing acylated peptide from stomach, Nature, 1999, 402, 656–660 http://dx.doi.org/10.1038/45230CrossrefGoogle Scholar

  • [3] Korbonits M., Bustin S.A., Kojima M., Jordan S., Adams E.F., Lowe D.G., et al., The expression of the growth hormone secretagogue receptor ligand ghrelin in normal and abnormal human pituitary and other neuroendocrine tumors, J. Clin. Endocrinol. Metab., 2001, 86, 881–887 http://dx.doi.org/10.1210/jc.86.2.881CrossrefGoogle Scholar

  • [4] Li A., Cheng G., Zhu GH., Tarnawski A.S., Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release, Biochem. Biophys. Res. Commun., 2007, 353, 238–243 http://dx.doi.org/10.1016/j.bbrc.2006.11.144CrossrefGoogle Scholar

  • [5] Zhang J.V., Jahr H., Luo C.W., Klein C., Van Kolen K., Ver Donck L., et al., Obestatin induction of earlyresponse gene expression in gastrointestinal and adipose tissues and the mediatory role of G proteincoupled receptor, GPR39, Mol. Endocrinol., 2008, 22, 1464–1475 Google Scholar

  • [6] Garg A., The ongoing saga of obestatin: is it a hormone?, J. Clin. Endocrinol. Metab., 2007, 92, 3396–3398 http://dx.doi.org/10.1210/jc.2007-0275CrossrefGoogle Scholar

  • [7] Pazos Y., Alvarez C.J., Camina J.P., Casanueva F.F., Stimulation of extracellular signal-regulated kinases and proliferation in the human gastric cancer cells KATO-III by obestatin, Growth Factors, 2007, 25, 373–381 http://dx.doi.org/10.1080/08977190801889313CrossrefGoogle Scholar

  • [8] Alvarez C., Lodeiro M., Theodoropoulou M., Camina J., Casanueva F., Pazos Y., Obestatin stimulates Akt signalling in gastric cancer cells through β-arrestinmediated epidermal growth factor receptor transactivation, Endocr. Relat. Cancer, 2009, 16, 599–611 http://dx.doi.org/10.1677/ERC-08-0192CrossrefGoogle Scholar

  • [9] Ivanova I.V., Schubert R., Duridanova D.B., Bolton T.B., Lubomirov L.T., Gagov H.S., Cocaine- and amphetamine-regulated transcript (CART) peptide as an in vivo regulator of cardiac function in Rana ridibunda frog, Exp. Physiol., 2007, 92, 1037–1046 CrossrefGoogle Scholar

  • [10] Hartzell H.C., Distribution of muscarinic acetylcholine receptors and presynaptic nerve terminals in amphibian heart, J. Cell Biol., 1980, 86, 6–20 http://dx.doi.org/10.1083/jcb.86.1.6CrossrefGoogle Scholar

  • [11] Parsons T.D., Hartzell H.C., Regulation of Ca2+ current in frog ventricular cardiomyocytes by guanosine 5′-triphosphate analogues and isoproterenol, J. Gen. Physiol., 1993, 102, 525–549 http://dx.doi.org/10.1085/jgp.102.3.525CrossrefGoogle Scholar

  • [12] Jurevicius J, Fischmeister R., Longitudinal distribution of Na+ and Ca2+ channels and betaadrenoceptors on the sarcolemmal membrane of frog cardiomyocytes, J. Physiol., 1997, 503, 471–477 http://dx.doi.org/10.1111/j.1469-7793.1997.471bg.xCrossrefGoogle Scholar

  • [13] Nagaya N., Uematsu M., Kojima M., Date Y., Nakazato M., Okumura H., et al., Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors, Circulation, 2001, 104, 2034–2038 http://dx.doi.org/10.1161/hc4201.097836CrossrefGoogle Scholar

  • [14] Lohse M.J., Engelhardt S., Eschenhagen T., What is the role of beta-adrenergic signaling in heart failure, Circ. Res., 2003, 93, 896–906 http://dx.doi.org/10.1161/01.RES.0000102042.83024.CACrossrefGoogle Scholar

  • [15] Gerhardstein B.L., Puri T.S., Chien A.J., Hosey M.M., Identification of the sites phosphorylated by cyclic AMP-dependent protein kinase on the β2 subunit of L-type voltage-dependent calcium channels, Biochemistry, 1999, 38, 10361.10370 http://dx.doi.org/10.1021/bi990896oCrossrefGoogle Scholar

  • [16] Marx S.O., Reiken S., Hisamatsu Y., Jayaraman T., Burkhoff D., Rosemblit N., et al., PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts, Cell, 2000, 101, 365–376 http://dx.doi.org/10.1016/S0092-8674(00)80847-8CrossrefGoogle Scholar

  • [17] Simmerman H.K., Jones L.R., Phospholamban: protein structure, mechanism of action, and role in cardiac function, Physiol. Rev., 1998, 78, 921–947 Google Scholar

  • [18] Sulakhe P.V., Vo X.T., Regulation of phospholamban and troponin-I phosphorylation in the intact rat cardiomyocytes by adrenergic and cholinergic stimuli, Mol. Cell. Biochem., 1995, 149-150, 103–126 http://dx.doi.org/10.1007/BF01076569CrossrefGoogle Scholar

  • [19] Klitzner T., Morad M., Excitation-contraction coupling in frog ventricle. Possible Ca2+ transport mechanisms, Pflugers Arch., 1983, 398, 274–283 Google Scholar

  • [20] Fan J., Shuba Y.M., Morad M., Regulation of cardiac sodium-calcium exchanger by β-adrenergic agonists, Proc. Natl. Acad. Sci. USA, 1996, 93, 5527–5532 http://dx.doi.org/10.1073/pnas.93.11.5527CrossrefGoogle Scholar

  • [21] Zhang Z.Y., Zhou B., Xie L., Modulation of protein kinase signaling by protein phosphatases and inhibitors, Pharmacol. Ther., 2002, 93, 307–317 http://dx.doi.org/10.1016/S0163-7258(02)00199-7CrossrefGoogle Scholar

  • [22] Kunst G., Kress K.R., Gruen M., Uttenweiler D., Gautel M., Fink R.H., Myosin Binding Protein C, a Phosphorylation-Dependent Force Regulator in Muscle That Controls the Attachment of Myosin Heads by Its Interaction With Myosin S2, Circ. Res., 2000, 86, 51–58 Google Scholar

  • [23] Liu X., Wu W.K.K., Yu L., Li Z.J., Sung J.J.Y., Zhang S.T., et al., Epidermal growth factor-induced esophageal cancer cell proliferation requires transactivation of α-adrenoceptors, J. Pharmacol. Exp. Ther., 2008, 326, 69–75 http://dx.doi.org/10.1124/jpet.107.134528CrossrefGoogle Scholar

  • [24] Stene-Larson G., Helle K., Cardiac β2-adrenoreceptor in the frog, Comp. Biochem. Physiol. C, 1978, 60, 165–173 http://dx.doi.org/10.1016/0300-9629(78)90223-2Google Scholar

  • [25] Camina J.P., Campos J.F., Caminos J.E., Dieguez C., Casanueva F.F., Obestatin-mediated proliferation of human retinal pigment epithelial cells: regulatory mechanisms, J. Cell Physiol., 2007, 211, 1–9 http://dx.doi.org/10.1002/jcp.20925CrossrefGoogle Scholar

  • [26] Soares J.B., Rocha-Sousa A., Castro-Chaves P., Henriques-Coelho T., Leite-Moreira AF., Inotropic and lusitropic effects of ghrelin and their modulation by the endocardial endothelium, NO, prostaglandins, GHS-R1a and KCa channels, Peptides, 2006, 27, 1616–1623 http://dx.doi.org/10.1016/j.peptides.2005.12.007Google Scholar

  • [27] Iglesias M.J., Piñeiro R., Blanco M., Gallego R., Diéguez C., Gualillo O., et al., Growth hormone releasing peptide (ghrelin) is synthesized and secreted by cardiomyocytes, Cardiovasc. Res., 2004, 62, 481–488 http://dx.doi.org/10.1016/j.cardiores.2004.01.024CrossrefGoogle Scholar

About the article

Published Online: 2009-07-26

Published in Print: 2009-09-01


Citation Information: Open Life Sciences, Volume 4, Issue 3, Pages 327–334, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0023-3.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xue-Jia Su, Rui-Xin Dong, Yan-Peng Li, Shu-Guang Yang, and Zhao-Feng Li
Peptides, 2014, Volume 52, Page 58
[2]
Andrew J Agnew, Emma Robinson, Carmel M McVicar, Adam P Harvey, Imran HA Ali, Jennifer E Lindsay, Denise M McDonald, Brian D Green, and David J Grieve
British Journal of Pharmacology, 2012, Volume 166, Number 1, Page 327
[3]
Inge Seim, Carina Walpole, Laura Amorim, Peter Josh, Adrian Herington, and Lisa Chopin
Molecular and Cellular Endocrinology, 2011, Volume 340, Number 1, Page 111

Comments (0)

Please log in or register to comment.
Log in