Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year


IMPACT FACTOR 2016 (Open Life Sciences): 0.448

CiteScore 2016: 1.02

SCImago Journal Rank (SJR) 2016: 0.329
Source Normalized Impact per Paper (SNIP) 2016: 0.621

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 4, Issue 3 (Sep 2009)

Issues

Genetic evolution and diversity of common carp Cyprinus carpio L.

Dimitry Chistiakov / Natalia Voronova
Published Online: 2009-07-26 | DOI: https://doi.org/10.2478/s11535-009-0024-2

Abstract

Knowledge of genetic variation and population structure of existing strains of both farmed and wild common carp Cyprinus carpio L. is absolutely necessary for any efficient fish management and/or conservation program. To assess genetic diversity in common carp populations, a variety of molecular markers were analyzed. Of those, microsatellites and mitochondrial DNA were most frequently used in the analysis of genetic diversity and genome evolution of common carp. Using microsatellites showed that the genome evolution in common carp exhibited two waves of rearrangements: one whole-genome duplication (12–16 million years ago) and a more recent wave of segmental duplications occurring between 2.3 and 6.8 million years ago. The genome duplication event has resulted in tetraploidy since the common carp currently harbors a substantial portion of duplicated loci in its genome and twice the number of chromosomes (n = 100–104) of most other cyprinid fishes. The variation in domesticated carp populations is significantly less than that in wild populations, which probably arises from the loss of variation due to founder effects and genetic drift. Genetic differentiation between the European carp C.c. carpio and Asian carp C.c. haematopterus is clearly evident. In Asia, two carp subspecies, C.c. haematopterus and C.c. varidivlaceus, seem to be also genetically distinct.

Keywords: Common carp; Microsatellites; Mitochondrial DNA markers; Genome evolution; Genetic diversity; Population

  • [1] Nelson J.S., Fishes of the world, 3rd ed., John Wiley & Sons Inc., New York, 1994 Google Scholar

  • [2] Balon E.K., The oldest domesticated fishes, and the consequences of an epigenetic dichotomy in fish culture, J. Ichthyol. Aquat. Biol., 2006, 11, 47–86 Google Scholar

  • [3] Balon E.K., Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers, Aquaculture, 1995, 129, 3–48 http://dx.doi.org/10.1016/0044-8486(94)00227-FCrossrefGoogle Scholar

  • [4] Kirpitchnikov V.S., Homologous hereditary variation and evolution of wild common carp Cyprinus carpio L, Genetika, 1967, 8, 65–72, (in Russian) Google Scholar

  • [5] Kirpitchnikov V.S., Genetics and breeding of common carp, INRA, Paris, 1999 Google Scholar

  • [6] Kottelat M., Fishes of Laos, WHT Publication (Pty) Ltd, Colombo, Sri Lanka, 2001 Google Scholar

  • [7] Valenta M., Slechta V., Slechtova V., Kalal L., Genetic polymorphism and isoenzyme patterns of lactate dehydrogenase in tench (Tinca tinca), crician carp (Carassuis carassius) and carp (Cyprinus carpio), Anim. Blood Groups Biochem. Genet., 1977, 8, 217–230 Google Scholar

  • [8] Danzmann R.G., Down N.E., Isozyme expression in F1 hybrids between carp and goldfish, Biochem. Genet., 1982, 20, 1–15 http://dx.doi.org/10.1007/BF00484931CrossrefGoogle Scholar

  • [9] Zhou J., Wu Q., Wang Z., Ye Y., Genetic variation analysis within and among six varieties of common carp (Cyprinus carpio L.) in China using microsatellite markers, Genetika, 2004, 40, 1389–1393 Google Scholar

  • [10] David L., Rosenberg N.A., Lavi U., Feldman M.W., Hillel J., Genetic diversity and population structure inferred from the partially duplicated genome of domesticated carp, Cyprinus carpio L., Genet. Sel. Evol., 2007, 39, 319–340 http://dx.doi.org/10.1186/1297-9686-39-3-319CrossrefGoogle Scholar

  • [11] Li D., Kang D., Yin Q., Sun X., Liang L., Microsatellite DNA marker analysis of genetic diversity in wild common carp (Cyprinus carpio L.) populations, J. Genet. Genomics, 2007, 34, 984–993 http://dx.doi.org/10.1016/S1673-8527(07)60111-8CrossrefGoogle Scholar

  • [12] David L., Rajasekaran P., Fang J., Hillel J., Lavi U., Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite markers, Mol. Genet. Genomics, 2001, 266, 353–262 http://dx.doi.org/10.1007/s004380100569CrossrefGoogle Scholar

  • [13] Kohlmann K., Gross R., Murakaeva A., Kersten P., Genetic variability and structure of common carp (Cyprinus carpio) populations throughout the distribution range inferred from allozyme, microsatellite and mitochondrial DNA markers, Aquat. Living Resour., 2003, 16, 421–431 http://dx.doi.org/10.1016/S0990-7440(03)00082-2CrossrefGoogle Scholar

  • [14] Zhou J.F., Wu Q.J., Ye Y.Z., Tong J.G., Genetic divergence between Cyprinus carpio carpio and Cyprinus carpio haematopterus as assessed by mitochondrial DNA analysis, with emphasis on origin of European domestic carp, Genetica, 2003, 119, 93–97 http://dx.doi.org/10.1023/A:1024421001015CrossrefGoogle Scholar

  • [15] Ludannyi R.I., Khrisanfova G.G., Vasiév V.A., Prizenko V.K., Bogeruk, A.K., Ryskov A.P., et al., Genetic diversity and differentiation of Russian common carp (Cyprinus carpio L.) breeds inferred from RAPD markers, Genetika, 2006, 42, 1121–1129, (in Russian) Google Scholar

  • [16] Thai B.T., Burridge C.P., Pham T.A., Austin C.M., Using mitochondrial nucleotide sequences to investigate diversity and genealogical relationships within common carp (Cyprinus carpio L.), Anim. Genet., 2005, 36, 23–28 http://dx.doi.org/10.1111/j.1365-2052.2004.01215.xCrossrefGoogle Scholar

  • [17] Mabuchi K., Senou H., Nishida M., Mitochondrial DNA analysis reveals cryptic large scale invasion of non-native genotypes of common carp (Cyprinus carpio) in Japan, Mol. Ecol., 2008, 17, 796–809 CrossrefGoogle Scholar

  • [18] Liu Z.Y., Cordes J.F., DNA marker technologies and their applications in aquaculture genetics, Aquaculture, 2004, 238, 1–37 http://dx.doi.org/10.1016/j.aquaculture.2004.05.027CrossrefGoogle Scholar

  • [19] Crooijmans R.P.M.A., Bierbooms V.A.F., Koman J., Van der Poel J.J., Groenen, M.A.M., Microsatellite markers in common carp, Anim. Genet., 1997, 28, 129–134 http://dx.doi.org/10.1111/j.1365-2052.1997.00097.xCrossrefGoogle Scholar

  • [20] Aliah R.S., Takagi M., Dong S., Teoh C.T., Taniguchi, N. Isolation and inheritance of microsatellite markers in the common carp Cyprinus carpio, Fish. Sci., 1999, 65, 235–239 Google Scholar

  • [21] Wei D., Lou Y., Sun X. Isolation of microsatellite markers in the common carp, Zool. Res., 2001, 22, 238–241 Google Scholar

  • [22] Yue G.H., Ho M.Y., Orban L., Komen J., Microsatellites within genes and ESTs of common carp and their applicability in silver crucian carp, Aquaculture, 2004, 234, 85–98 http://dx.doi.org/10.1016/j.aquaculture.2003.12.021CrossrefGoogle Scholar

  • [23] Sun X.-W., Hou N., Liang L.-Q., Microsatellite clones in common carp (Cyprinus carpio): rapid isolation and characteristic analysis, Mol. Ecol. Resour., 2008, 8, 1357–1359 http://dx.doi.org/10.1111/j.1755-0998.2008.02305.xCrossrefGoogle Scholar

  • [24] Ward R.D., Grewe P.M., Appraisal of molecular genetic techniques in fisheries, In: Carvalho G.R., Pitcher T.J. (Eds.), Molecular Genetics in Fisheries, Chapman & Hall, Great Britain, 1995 Google Scholar

  • [25] Bruford M.W., Bradley D.G., Luikart G., DNA markers reveal the complexity of livestock domestication, Nat. Rev. Genet., 2003, 4, 900–910 http://dx.doi.org/10.1038/nrg1203CrossrefGoogle Scholar

  • [26] Chang Y.-S., Huang F.-L., Lo T.-B., The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome, J. Mol. Evol., 1994, 38, 138–155 http://dx.doi.org/10.1007/BF00166161CrossrefGoogle Scholar

  • [27] Gross R., Kohlmann K., Kersten P., PCR-RFLP analysis of the mitochondrial DNA ND- 3/4 and ND-5/6 gene polymorphisms in the European and East Asian subspecies of common carp (Cyprinus carpio L.), Aquaculture, 2002, 204, 7–516 http://dx.doi.org/10.1016/S0044-8486(01)00836-5Google Scholar

  • [28] Guo X.H., Liu S.J., Liu Y., Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level, Aquaculture, 2003, 224, 25–38 http://dx.doi.org/10.1016/S0044-8486(03)00168-6CrossrefGoogle Scholar

  • [29] Thai B.T., Si V.N., Phan P.D., Austin, C.M., Phylogenetic evaluation of subfamily classification of the Cyprinidae focusing on Vietnamese species, Aquat. Living Resour., 2007, 20, 143–153 http://dx.doi.org/10.1051/alr:2007025CrossrefGoogle Scholar

  • [30] Ohno S., Atkin N.B., Comparative DNA values and chromosome complements of eight species of fishes, Chromosoma, 1966, 18, 455–466 http://dx.doi.org/10.1007/BF00332549CrossrefGoogle Scholar

  • [31] Ohno S., Muramoto J., Christian L., Atkin N.B., Diploid-tetraploid relationship among old world members of the fish family Cyprinidae, Chromosoma, 1967, 23, 1–19 http://dx.doi.org/10.1007/BF00293307CrossrefGoogle Scholar

  • [32] Ferris S. D., Whitt G.S., The evolution of duplicate gene expression in the carp (Cyprinus carpio), Experientia, 1977, 33, 1299–1301 http://dx.doi.org/10.1007/BF01920144CrossrefGoogle Scholar

  • [33] Engelsma M.Y., Stet R.J., Saeij J.P., Verburgvan Kemenade B.M., Differential expression and haplotypic variation of two interleukin-1 beta genes in the common carp (Cyprinus carpio L.), Cytokine, 2003, 22, 21–32 http://dx.doi.org/10.1016/S1043-4666(03)00102-9CrossrefGoogle Scholar

  • [34] Li S., Hu W., Wang Y., Zhu Z., Cloning and expression analysis in mature individuals of two chicken GnRH (cGnRH-II) genes in common carp (Cyprinus carpio), Sci. China C Life Sci., 2004, 47, 349–358 http://dx.doi.org/10.1360/03yc0117CrossrefGoogle Scholar

  • [35] Futami K., Zhang H., Okamoto N., Functional divergence of duplicated c-myc genes in a tetraploid fish, the common carp (Cyprinus carpio), Gene, 2005, 363, 61–66 http://dx.doi.org/10.1016/j.gene.2005.06.041CrossrefGoogle Scholar

  • [36] Uyeno T., Smith G.R., Tetraploid origin of the karyotype of catostomid fishes, Science, 1972, 175, 644–646 http://dx.doi.org/10.1126/science.175.4022.644CrossrefGoogle Scholar

  • [37] Kirpichnikov V.S., Genetic bases of fish selection, Springer-Verlag, Berlin, 1981 Google Scholar

  • [38] Larhammar D., Risinger C., Molecular genetic aspects of tetraploidy of the common carp Cyprinus carpio, Mol. Phylogenet. Evol., 1994, 3, 59–68 http://dx.doi.org/10.1006/mpev.1994.1007CrossrefGoogle Scholar

  • [39] David L., Blum S., Feldman M.W., Lavi U., Hillel J. Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci, Mol. Biol. Evol., 2003, 20, 1425–1434 http://dx.doi.org/10.1093/molbev/msg173CrossrefGoogle Scholar

  • [40] Ojima Y., Hitotsumachi S., Makino S., Cytogenetic studies in lower vertebrates. I. Preliminary report on the chromosomes of funa (Carassius auratus) and the goldfish, Proc. Jpn. Acad., 1966, 42, 62–66 Google Scholar

  • [41] Taylor J., Mahon R., Hybridization of Cyprinus carpio and Carassius auratus, the first two exotic species in the lower Laurentian Great Lakes, Environ. Biol. Fishes, 1, 1966, 205–208 http://dx.doi.org/10.1007/BF00000412CrossrefGoogle Scholar

  • [42] Ohno S., Dispensable genes, Trends Genet., 1985, 1, 160–164 http://dx.doi.org/10.1016/0168-9525(85)90070-8CrossrefGoogle Scholar

  • [43] Polley S.D., Tiku P.E., Trueman R.T., Caddick M.X., Morozov I.Y., Cossins A.R., Differential expression of cold- and diet-specific genes encoding two carp liver delta 9-acyl-CoA desaturase isoforms, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 284, R41–R50 Google Scholar

  • [44] Tiku P.E., Gracey A.Y., Macartney A.I., Beynon R.J., Cossins A.R., Cold-induced expression of delta9-desaturase in carp by transcriptional and posttranslational mechanisms, Science, 1996, 271, 815–818 http://dx.doi.org/10.1126/science.271.5250.815CrossrefGoogle Scholar

  • [45] Force A., Lynch M., Pickett F.B., Amores A., Yan Y.L., Postlethwait J., Preservation of duplicate genes by complementary, degenerative mutations, Genetics, 1999, 151, 1531–1545 Google Scholar

  • [46] Liu S.J., Liu Y., Zhou G.J., The formation of tetraploid stocks of red crucian carp x common carp hybrids as an effect of interspecific hybridization, Aquaculture, 2001, 192, 171–186 http://dx.doi.org/10.1016/S0044-8486(00)00451-8CrossrefGoogle Scholar

  • [47] Wolfe K. H., Yesterday’s polyploids and the mystery of diploidization, Nat. Rev. Genet., 2001, 2, 333–341 http://dx.doi.org/10.1038/35072009CrossrefGoogle Scholar

  • [48] Zhang Y., Liang L., Jiang P., Li D., Lu C., Sun X., Genome evolution trend of common carp (Cyprinus carpio L.) as revealed by the analysis of microsatellite loci in a gynogentic family, J. Genet. Genomics, 2008, 35, 97–103 http://dx.doi.org/10.1016/S1673-8527(08)60015-6CrossrefGoogle Scholar

  • [49] Kohlmann K., Kersten P., Genetics variability of German and foreign common carp (Cyprinus carpio L.) population, Aquaculture, 1999, 173, 435–445 http://dx.doi.org/10.1016/S0044-8486(98)00474-8CrossrefGoogle Scholar

  • [50] Froufe E., Magyary I., Lehoczky I., Weiss S., mtDNA sequence data supports an Asian ancestry and single introduction of common carp into Danube basin, Fish Biol., 2002, 61, 301–314 http://dx.doi.org/10.1111/j.1095-8649.2002.tb01756.xCrossrefGoogle Scholar

  • [51] Kohlmann K., Kersten P., Flajshans M., Microsatellitebased genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations, Aquaculture, 2005, 247, 253–266 http://dx.doi.org/10.1016/j.aquaculture.2005.02.024CrossrefGoogle Scholar

  • [52] Memis D., Kohlmann K., Genetic characterization of wild common carp (Cyprinus carpio L.) from Turkey, Aquaculture, 2006, 258, 257–262 http://dx.doi.org/10.1016/j.aquaculture.2006.03.041CrossrefGoogle Scholar

  • [53] Zardoya R., Doadrio I., Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids, J. Mol. Evol., 1999, 49, 227–237 http://dx.doi.org/10.1007/PL00006545CrossrefGoogle Scholar

  • [54] Hickling C., Fish culture, Faber & Faber, London, 1962 Google Scholar

  • [55] Vooren C.M., Ecological aspects of the introduction of fish species into natural habitats in Europe, with special reference to the Netherlands, J. Fish Biol., 1972, 4, 565–583 http://dx.doi.org/10.1111/j.1095-8649.1972.tb05702.xCrossrefGoogle Scholar

  • [56] Desvignes J.F., Laroche J., Durand J.D., Bouvet Y., Genetic variability in reared stocks of common carp Cyprinus carpio L. based on allozymes and microsatellites, Aquaculture, 2001, 194, 291–301 http://dx.doi.org/10.1016/S0044-8486(00)00534-2CrossrefGoogle Scholar

  • [57] Wang C.H., Li S.F., Genetic variability and relationships in mitochondrial DNA CO II gene sequence of red common carps in China, Yi Chuan Xue Bao, 2004, 31, 1226–1231, (in Chinese) Google Scholar

  • [58] Nguyen V.H., Ngo S.V., Vietnamese freshwater fish, cyprinid family, Agriculture Publish House, Hanoi, Vietnam, 2001 Google Scholar

  • [59] Wang C.H., Li S.F., Phylogenetic relationships of ornamental (Koi) carp, Oujiang Color carp and Long-fin carp revealed by mitochondrial DNA COII gene sequences and RAPD analysis, Aquaculture, 2004, 231, 83–91 http://dx.doi.org/10.1016/j.aquaculture.2003.10.040CrossrefGoogle Scholar

  • [60] Mabuchi K., Seno, H., Suzuki T., Nishida M., Discovery of an ancient lineage of Cyprinus carpio from Lake Biwa, central Japan, based on mtDNA sequence data, with reference to possible multiple origins of koi, J. Fish Biol., 2005, 66, 1516–1528 http://dx.doi.org/10.1111/j.0022-1112.2005.00676.xCrossrefGoogle Scholar

  • [61] Mabuchi K., Miya M., Senou H., Suzuki T., Nishida M., Complete mitochondrial DNA sequence of the Lake Biwa wild strain of common carp (Cyprinus carpio L.): further evidence for an ancient origin, Aquaculture, 2006, 257, 68–77 http://dx.doi.org/10.1016/j.aquaculture.2006.03.040CrossrefGoogle Scholar

  • [62] Jewell M.A.S., Rahman M.M., Islam M.N., Study of genetic variation in different hatchery populations of common carp (Cyprinus carpio L.) of Mymensingh district in Bangladesh using microsatellite DNA markers, J. Biosci., 2006, 14, 113–120 Google Scholar

  • [63] Mickett K., Morton C., Feng, J., Li P., Simmons M., Dunham R.A., et al., Assessing genetic diversity of domestic populations of channel catfish (Ictalurus punctatus) in Alabama using AFLP markers, Aquaculture, 2003, 228, 91–105 http://dx.doi.org/10.1016/S0044-8486(03)00311-9CrossrefGoogle Scholar

  • [64] Innes B.H., Elliott N.G., Genetic diversity in a Tasmanian hatchery population of Atlantic salmon (Salmo salar L.) compared with its Canadian progenitor population., Aquaculture Res., 2006, 37, 563–569 http://dx.doi.org/10.1111/j.1365-2109.2006.01463.xCrossrefGoogle Scholar

  • [65] Was A., Wenne R., Genetic differentiation in hatchery and wild sea trout (Salmo trutta) in the Southern Baltic at microsatellite loci, Aquaculture, 2002, 204, 493–506 http://dx.doi.org/10.1016/S0044-8486(01)00835-3CrossrefGoogle Scholar

  • [66] Sekino M., Hara M., Taniguchi N. Genetic diversity within and between hatchery strains of Japanese flounder Paralichthys olivaceus assessed by means of microsatellite and mitochondrial DNA sequencing analysis, Aquaculture, 2002, 213, 101–122 http://dx.doi.org/10.1016/S0044-8486(01)00885-7CrossrefGoogle Scholar

  • [67] Allendorf F.W., Phelps S., Loss genetic variation in hatchery stock of cutthroat trout, Am. Fish. Soc., 1980, 109, 537–543 http://dx.doi.org/10.1577/1548-8659(1980)109<537:LOGVIA>2.0.CO;2CrossrefGoogle Scholar

  • [68] Thai B.T., Pham A.T., Austin C.M., Genetic diversity of common carp in Vietnam using direct sequencing and SSCP analysis of the mitochondrial DNA control region, Aquaculture, 2006, 258, 228–240 http://dx.doi.org/10.1016/j.aquaculture.2006.03.025CrossrefGoogle Scholar

  • [69] Zhu Z.Y., Sun Y.H., Embryonic and genetic manipulation in fish, Cell Res., 2000, 10, 17–27 http://dx.doi.org/10.1038/sj.cr.7290032CrossrefGoogle Scholar

  • [70] Gomelsky B., Chromosome set manipulation and sex control in common carp: a review, Aquat. Living Resour., 2003, 16, 408–415 http://dx.doi.org/10.1016/S0990-7440(03)00085-8CrossrefGoogle Scholar

  • [71] Vandeputte M., Selective breeding of quantitative traits in the common carp (Cyprinus carpio): a review, Aquat. Living Resour., 2003, 16, 399–407 http://dx.doi.org/10.1016/S0990-7440(03)00056-1CrossrefGoogle Scholar

  • [72] Komen J., Thorgaard G.H., Androgenesis, gynogenesis and the production of clones in fishes: a review, Aquaculture, 2007, 269, 150–173 http://dx.doi.org/10.1016/j.aquaculture.2007.05.009CrossrefGoogle Scholar

  • [73] Murakaeva A., Kohlmann K., Kersten P., Kamilov B., Khabibullin D., Genetic characterization of wild and domesticated common carp (Cyprinus carpio L.) populations from Uzbekistan, Aquaculture, 2003, 218, 153–166 http://dx.doi.org/10.1016/S0044-8486(03)00005-XCrossrefGoogle Scholar

  • [74] Lehoczky I., Jeney J., Magyary I., Hancz C., Kohlmann K., Preliminary data on genetic variability and purity of common carp (Cyprinus carpio L.) strains kept at the live gene bank at Research Institute for Fisheries, Aquaculture and Irrigation (HAKI) Szarvas, Hungary, Aquaculture, 2005, 247, 45–49 Google Scholar

  • [75] Sun X., Liang L., A genetic linkage map of common carp (Cyprinus carpio L.) And mapping of a locus associated with cold tolerance, Aquaculture, 2007, 269, 174–186 http://dx.doi.org/10.1016/j.aquaculture.2007.05.017CrossrefGoogle Scholar

  • [76] Vasemagi A., Nilsson J., Primmer C.R., Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in atlantic salmon (Salmo salar L.), Mol. Biol. Evol., 2005, 22, 1067–1076 http://dx.doi.org/10.1093/molbev/msi093CrossrefGoogle Scholar

  • [77] Christoffels A., Bartfai R., Srinivasan H., Komen H., Orban L., Comparative genomics in cyprinids: common carp ESTs help the annotation of the zebrafish genome, BMC Bioinformatics, 2006, 7, Suppl. 5, S2 http://dx.doi.org/10.1186/1471-2105-7-S5-S2CrossrefGoogle Scholar

  • [78] He C., Chen L., Simmons M., Kim S., Liu Z.J., Putative SNP discovery in interspecific hybrids of catfish by comparative EST analysis, Anim. Genet., 2003, 34, 445–448 http://dx.doi.org/10.1046/j.0268-9146.2003.01054.xCrossrefGoogle Scholar

  • [79] Rasooly R.S., Henken D., Freeman, N., Tompkins L., Badman D., Briggs J., et al., Genetic and genomic tools for zebrafish research: the NIH zebrafish initiative, Dev. Dyn., 2003, 228, 490–496 http://dx.doi.org/10.1002/dvdy.10366CrossrefGoogle Scholar

  • [80] Tang J., Leunissen JA, Voorrips RE, van der Linden CG, Vosman B., HaploSNPer: a web-based allele and SNP detection tool, BMC Genetics, 2008, 9, 23 http://dx.doi.org/10.1186/1471-2156-9-23CrossrefGoogle Scholar

About the article

Published Online: 2009-07-26

Published in Print: 2009-09-01


Citation Information: Open Life Sciences, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0024-2.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
PHO Viadanna, T Miller-Morgan, T Peterson, K Way, DM Stone, GD Marty, F Pilarski, RP Hedrick, and TB Waltzek
Diseases of Aquatic Organisms, 2017, Volume 123, Number 1, Page 19
[2]
Lorenzo Vilizzi, F. Güler Ekmekçi, Ali Serhan Tarkan, and Zachary J. Jackson
Ecology of Freshwater Fish, 2015, Volume 24, Number 2, Page 165
[3]
Steven L. Goodbred, Reynaldo Patiño, Erik Orsak, Prakash Sharma, and Shane Ruessler
The American Midland Naturalist, 2013, Volume 169, Number 2, Page 426
[4]
Mikołaj Adamek, Dieter Steinhagen, Ilgiz Irnazarow, Jun-ichi Hikima, Tae-Sung Jung, and Takashi Aoki
Developmental & Comparative Immunology, 2014, Volume 43, Number 2, Page 151
[6]
L.H. Xu, C.H. Wang, J. Wang, Z.J. Dong, Y.Q. Ma, and X.X. Yang
Genetics and Molecular Research, 2012, Volume 11, Number 3, Page 3222
[8]

Comments (0)

Please log in or register to comment.
Log in