Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Alle Formate und Preise
Weitere Optionen …
Band 4, Heft 3


Volume 10 (2015)

The combined effect of Cd2+ and ACh on action potentials of Nitellopsis obtusa cells

Vilma Kisnierienė / Vidmantas Sakalauskas / Aleksandras Pleskačiauskas / Vladimir Yurin
  • Department of Plants Physiology and Biochemistry, Biological Faculty, Belarusian State University, 220050, Minsk, Belarus
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Osvaldas Rukšėnas
Online erschienen: 26.07.2009 | DOI: https://doi.org/10.2478/s11535-009-0028-y


Interrelations between the action of acetylcholine (ACh) and cadmium ions (Cd2+) on bioelectrogenesis of Nitellopsis obtusa cells were investigated. We analyzed repetitively triggered action potentials (AP), their reproducibility, shape and dynamics of membrane potential after AP induction. ACh significantly increased membrane permeability only at high concentrations (1 mM and 5 mM). Repolarisation level of action potential after the first stimulus was much more positive in all cells treated with ACh as compared to the control. Differences of membrane potentials between points just before the first and the second stimuli were 23.4±.0 mV (control); 40.4±5.9 mV (1 mM ACh solution) and 57.7 ± 8.5 mV (5 mM ACh solution). Cd2+ at 20 μM concentration was examined as a possible inhibitor of acetylcholinesterase (AChE) in vivo. We found that cadmium strengthens depolarizing effect of acetylcholine after the first stimulus. The highest velocity of AP repolarization was reduced after ACh application and Cd2+strengthened this effect. There were no differences in dynamics of membrane potential after repetitively triggered action potentials in ACh or ACh and Cd2+ solutions. This shows that cadmium in small concentration acts as inhibitor of acetylcholinesterase.

Keywords: Action potential; Acetylcholine; Plant acetylcholinesterase; Plant electrical signaling; Characeae

  • [1] Wessler I., Kilbinger H., Bittinger F., Unger R., Kirkpatrick C.J., The non-neuronal cholinergic system in humans: Expression, function and pathophysiology, Life Sci., 2003, 72, 2055–2061 http://dx.doi.org/10.1016/S0024-3205(03)00083-3CrossrefGoogle Scholar

  • [2] Horiuchi Y., Kimura R., Kato N., Fujii T., Seki M., Endo T., et al., Evolutional study on acetylcholine expression, Life Sci., 2003, 72, 1745–1756 http://dx.doi.org/10.1016/S0024-3205(02)02478-5CrossrefGoogle Scholar

  • [3] Wessler I., Kilbinger H., Bittinger F., Kirkpatrick C.J., The biological role of non-neuronal acetylcholine in plants and humans, Jpn. J. Pharmacol., 2001, 85, 2–10 http://dx.doi.org/10.1254/jjp.85.2CrossrefGoogle Scholar

  • [4] Shimmen T., Mimura T., Kikuyama M., Tazawa M., Characean cells as a tool for studying electrophysiological characteristics, Cell struct. funct., 1994, 19, 263–278 http://dx.doi.org/10.1247/csf.19.263CrossrefGoogle Scholar

  • [5] Fromm J., Lautner S., Electrical signals and their physiological significance in plants, Plant Cell Environ., 2007, 30, 249–257 http://dx.doi.org/10.1111/j.1365-3040.2006.01614.xCrossrefGoogle Scholar

  • [6] Beilby M.J., Action potential in Charophytes, Int. Rev. Cytol., 2007, 257, 43–82 http://dx.doi.org/10.1016/S0074-7696(07)57002-6CrossrefGoogle Scholar

  • [7] Davies E., Electrical signals in plants: Facts and hypotheses, In: Volkov A.G., (Ed.), Plant Electrophysiology — Theory & Methods, Springer-Verlag, Berlin Heidelberg New York, 2006 Google Scholar

  • [8] Lunevsky V.Z., Zherelova O.M., Vostrikov I.Y., Berestovsky G.N., Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels, J. Membrane Biol., 1983, 72, 43–58 http://dx.doi.org/10.1007/BF01870313CrossrefGoogle Scholar

  • [9] Wacke M., Thiel G., Electrically triggered all-or-none Ca-liberation during action potential in the giant alga Chara, J. Gen. Physiol., 2001, 118, 11–21 http://dx.doi.org/10.1085/jgp.118.1.11CrossrefGoogle Scholar

  • [10] Kisnieriene V., Beitas K., Sakalauskas V., Daktariunas A., Information technologies for biology education: computerized electrophysiology of plant cells, Informatics in education, 2008, 7, 91–104 Google Scholar

  • [11] Frasco M.F., Fournier D., Carvalho F., Guilhermino L., Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity, Biomarkers, 2005, 10, 360–375 http://dx.doi.org/10.1080/13547500500264660CrossrefGoogle Scholar

  • [12] Carageorgiou H., Tzotzes V., Pantos C., Mourouzis C., Zarros A., Tsakiris S., In vivo and in vitro effects of cadmium on adult rat brain total antioxidant status, acetylcholinesterase, (Na+,K+)-ATPase and Mg2+-ATPase activities: protection by L-cysteine, Basic Clin. Pharmacol. Toxicol., 2004, 94, 112–118 http://dx.doi.org/10.1111/j.1742-7843.2004.pto940303.xCrossrefGoogle Scholar

  • [13] Deckert J., Cadmium toxicity in plants: Is there any analogy to its carcinogenic effect in mammalian cells?, Biometals, 2005, 18, 475–481 http://dx.doi.org/10.1007/s10534-005-1245-0CrossrefGoogle Scholar

  • [14] Karcz W., Kurtyka R., Effect of cadmium on growth, proton extrusion and membrane potential in maize coleoptile segments, Biol. Plantarum, 2007, 51, 713–719 http://dx.doi.org/10.1007/s10535-007-0147-0CrossrefGoogle Scholar

  • [15] Cooper G.P., Manalis R.S., Cadmium: Effects on transmitter release at the frog neuromuscular junction, Eur. J. Pharmacol., 1984, 99, 251–256 http://dx.doi.org/10.1016/0014-2999(84)90131-6CrossrefGoogle Scholar

  • [16] Purves R.D., Microelectrode methods for intracellular recording and ionophoresis, Academic Press, London, 1981 Google Scholar

  • [17] Kisnieriene V., Sakalauskas V, The effect of aluminium on bioelectrical activity of the Nitellopsis obtusa cell membrane after H+-ATPase inhibition, Cent. Eur. J. Biol., 2007, 2, 222–232 http://dx.doi.org/10.2478/s11535-007-0009-yCrossrefGoogle Scholar

  • [18] Shepherd V.A., Beilby M.J., Al Khazaaly S., Shimmen T., Mechano-perception in Chara cells: the influence of salinity and calcium on touch-activated receptor potentials, action potentials and ion transport, Plant Cell Environ., 2008, 31, 1575–1591 http://dx.doi.org/10.1111/j.1365-3040.2008.01866.xCrossrefGoogle Scholar

  • [19] Llamas A., Ullrich C.I., Sanz A., Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots, Plant Soil, 2000, 219, 21–28 http://dx.doi.org/10.1023/A:1004753521646CrossrefGoogle Scholar

  • [20] Yurin V.M., Sokolik A.I., Kudryashev A.P., Regulation of ion transport through plant cell membranes, Science and Engineering, Minsk, 1991, (in Russian) Google Scholar

  • [21] Jaffe M.J., Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor, acetylcholine, Plant Physiol., 1970, 46, 768–777 http://dx.doi.org/10.1104/pp.46.6.768CrossrefGoogle Scholar

  • [22] Roshchina V.V., Neurotransmitters in plant life, Science publishers, USA, 2001 Google Scholar

  • [23] Gong X.-Q., Bisson M.A., Acetylcholine-activated Cl- channel in the Chara tonoplast, J. Membrane Biol., 2002, 188, 107–113 http://dx.doi.org/10.1007/s00232-001-0177-zCrossrefGoogle Scholar

  • [24] Tretyn A., Influence of red light and acetylcholine on 45Ca2+ uptake by oat coleoptile cells, Cell Biol. Int. Rep., 1987, 11, 887–896 http://dx.doi.org/10.1016/0309-1651(87)90123-8CrossrefGoogle Scholar

  • [25] Thiel G., Homann U., Plieth C., Ion channel activity during the action potential in Chara: a new insight with new techniques, J. Exp. Bot., 1997, 48, 609–622 CrossrefGoogle Scholar

  • [26] Plieth C., Hansen U.P., Methodological aspects of pressure loading of fura-2 in to Characean cells, J. Exp. Bot., 1996, 47, 1601–1612 http://dx.doi.org/10.1093/jxb/47.10.1601CrossrefGoogle Scholar

  • [27] Trebacz K., Simonis W., Schönkntecht G., Cytoplasmic Ca2+, K+, CI−, and NO 3− activities in the liverwort Conocephalum conicum L at rest and during action potentials, Plant Physiol., 1994, 106, 1073–1084 Google Scholar

  • [28] Sagane Y., Nakagawa T., Yamamoto K., Michikawa S., Oguri S., Momonoki Y.S., Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom, Plant Physiol., 2005, 138, 1359–1371 http://dx.doi.org/10.1104/pp.105.062927CrossrefGoogle Scholar

  • [29] Momonoki Y.S., Asymmetric Distribution of Acetylcholinesteras in gravistimulated maize seedlings, Plant Physiol., 1997, 114, 47–53 CrossrefGoogle Scholar

  • [30] Dettbarn W.D., Acetylcholinesterase activity in Nitella, Nature, 1962, 194, 1175–1176 http://dx.doi.org/10.1038/1941175b0CrossrefGoogle Scholar

  • [31] Perfus-Barbeoch L., Leonhardt N., Vavasseur A., Forestier C., Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status, Plant J., 2002, 32, 539–548 http://dx.doi.org/10.1046/j.1365-313X.2002.01442.xCrossrefGoogle Scholar

  • [32] Astolfi S., Zuchi S., Passera C., Effect of cadmium on H+-ATPase activity of plasma membrane vesicles isolated from roots of different S-suppliedmaize (Zea mays L.) plants, Plant Sci., 2005, 169, 361–368 http://dx.doi.org/10.1016/j.plantsci.2005.03.025CrossrefGoogle Scholar

  • [33] Moran N., Fox D., Satter R.L, Interaction of the depolarization-activated K+ channel of Samanea saman with inorganic ions: a patch-clamp study, Plant Physiol., 1990, 94, 424–431 http://dx.doi.org/10.1104/pp.94.2.424CrossrefGoogle Scholar

  • [34] Cobbett C., Goldsbrough P., Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis, Annu. Rev. Plant. Biol., 2002, 53, 159–182 http://dx.doi.org/10.1146/annurev.arplant.53.100301.135154CrossrefGoogle Scholar

  • [35] Shabala S., Shabala L., Gradmann D., Chen Z., Newman I., Mancuso S., Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications, J. Exp. Bot., 2006, 57, 171–184 http://dx.doi.org/10.1093/jxb/erj022CrossrefGoogle Scholar

  • [36] Trebacz K., Busch M. B., Hejnowicz Z., Sievers A., Cyclopiazonic acid disturbs the regulation of cytosolic calcium when repetitive action potentials are evoked in Dionaea traps, Planta, 1996, 198, 623–626 http://dx.doi.org/10.1007/BF00262650CrossrefGoogle Scholar


Online erschienen: 26.07.2009

Erschienen im Druck: 01.09.2009

Quellenangabe: Open Life Sciences, Band 4, Heft 3, Seiten 343–350, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0028-y.

Zitat exportieren

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

Indre Lapeikaite, Ugne Dragunaite, Vilmantas Pupkis, Osvaldas Ruksenas, and Vilma Kisnieriene
Protoplasma, 2018
Olga Sevriukova, Auste Kanapeckaite, Indre Lapeikaite, Vilma Kisnieriene, Rima Ladygiene, and Vidmantas Sakalauskas
Journal of Environmental Radioactivity, 2014, Jahrgang 136, Seite 10

Kommentare (0)