Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 4, Issue 3

Issues

Volume 10 (2015)

Nicotine-induced memory impairment by increasing brain oxidative stress

Lucian Hritcu / Alin Ciobica
  • Department of Biology, “Alexandru Ioan Cuza” University, 700506, Iasi, Romania
  • Laboratory for Experimental and Applied Physiology, Romanian Academy, 700505, Iasi, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucian Gorgan
Published Online: 2009-07-26 | DOI: https://doi.org/10.2478/s11535-009-0029-x

Abstract

Male Wistar rats were subjected to chronic nicotine treatment (0.3 mg/kg; 7 continuous days) and their memory performance was studied by means of Y-maze and multi-trial passive avoidance tasks. Nicotine significantly decreased spontaneous alternation in Y-maze task and step-through-latency in the multi-trial passive avoidance task, suggesting effects on both short-term memory and long-term memory, respectively. In addition, nicotine induced neuronal apoptosis, DNA fragmentation, reduced antioxidant enzymes activity, and increased production of lipid peroxidation and reactive oxygen species, suggesting pro-oxidant activity. Our results provide further support that nicotine-induced memory impairment is due to an increase in brain oxidative stress in rats.

Keywords: Nicotine; Memory; Oxidative stress

  • [1] Zeidler R., Albermann K., Lang S., Nicotine and apoptosis, Apoptosis, 2007, 12, 1927–1943 http://dx.doi.org/10.1007/s10495-007-0102-8CrossrefGoogle Scholar

  • [2] Swan G.E., Lessov-Schlaggar C.N., The effects of tobacco smoke and nicotine on cognition and the brain, Neuropsychol. Rev., 2007, 17, 259–273 http://dx.doi.org/10.1007/s11065-007-9035-9CrossrefGoogle Scholar

  • [3] Mihailescu S., Drucker-Colin R., Nicotine, brain nicotinic receptors, and neuropsychiatric disorders, Arch. Med. Res., 2000, 31, 131–144 http://dx.doi.org/10.1016/S0188-4409(99)00087-9CrossrefGoogle Scholar

  • [4] Picciotto M.R., Zoli M., Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, Front Biosci., 2008, 13, 492–504 http://dx.doi.org/10.2741/2695CrossrefGoogle Scholar

  • [5] Araki H., Suemaru K., Gomita Y., Neuronal nicotinic receptor and psychiatric disorders: functional and behavioral effects of nicotine, Jpn. J. Pharmacol., 2002, 88, 133–138 http://dx.doi.org/10.1254/jjp.88.133CrossrefGoogle Scholar

  • [6] McEvoy J.P., Freudenreich O., McGee M., VanderZwaag C., Levin E., Rose J., Clozapine decreases smoking in patients with chronic schizophrenia, Biol. Psychiatry, 1995, 37, 550–552 http://dx.doi.org/10.1016/0006-3223(94)00365-ACrossrefGoogle Scholar

  • [7] McEvoy J.P., Freudenreich O., Wilson W.H., Smoking and therapeutic response to clozapine in patients with schizophrenia, Biol. Psychiatry, 1999, 46, 125–129 http://dx.doi.org/10.1016/S0006-3223(98)00377-1CrossrefGoogle Scholar

  • [8] Stage K.B., Glassman A.H., Covey L.S., Depression after smoking cessation: case reports, J. Clin. Psychiatry, 1996, 57, 467–469 CrossrefGoogle Scholar

  • [9] Levin E.D., Rezvani A.H., Nicotinic interactions with antipsychotic drugs, models of schizophrenia and impacts on cognitive function, Biochem. Pharmacol., 2007, 74, 1182–1191 http://dx.doi.org/10.1016/j.bcp.2007.07.019CrossrefGoogle Scholar

  • [10] McGehee D.S., Nicotine and synaptic plasticity in prefrontal cortex, Sci STKE, 2007, 399, 44 Google Scholar

  • [11] Biala G., Kruk M., Cannabinoid receptor ligands suppress memory-related effects of nicotine in the elevated plus maze test in mice, Behav. Brain Res., 2008, 192, 198–202 http://dx.doi.org/10.1016/j.bbr.2008.04.004CrossrefGoogle Scholar

  • [12] Ahmadi S., Zarrindast M.R., Haeri-Rohani A., Rezayof A., Nouri M., Nicotine improves morphine-induced impairment of memory: possible involvement of N-methyl-D-aspartate receptors in the nucleus accumbens, Dev. Neurobiol., 2007, 67, 1118–1127 http://dx.doi.org/10.1002/dneu.20456CrossrefGoogle Scholar

  • [13] Cincotta S., Yorek M.S., Moschak T.M., Lewis S.R., Rodefer J.S., Selective nicotinic acetylcholine receptor agonists: potential therapies for neuropsychiatric disorders with cognitive dysfunction, Curr. Opin. Investig. Drugs, 2008, 9, 47–56 Google Scholar

  • [14] Sola E., Capsoni S., Rosato-Siri M., Cattaneo A., Cherubini E., Failure of nicotine-dependent enhancement of synaptic efficacy at Schaffer-collateral CA1 synapses of AD11 anti-nerve growth factor transgenic mic, Eur. J. Neurosci., 2006, 24, 1252–1264 http://dx.doi.org/10.1111/j.1460-9568.2006.04996.xCrossrefGoogle Scholar

  • [15] Matta S.G., Elberger A.J., Combined exposure to nicotine and ethanol throughout full gestation results in enhanced acquisition of nicotine self-administration in young adult rat offspring, Psychopharmacology (Berl.), 2007, 193, 199–213 http://dx.doi.org/10.1007/s00213-007-0767-2CrossrefGoogle Scholar

  • [16] Dunnet S.B., Martel F.L., Proactive interference effects on short-term memory in rats, Basic parameters and drug effects, Behav. Neurosci., 1990, 104, 655–665 http://dx.doi.org/10.1037/0735-7044.104.5.655CrossrefGoogle Scholar

  • [17] Heisham S.J., Taylor R.C., Henningfield J.E., Nicotine and smoking: a review of effects on human performance, Exp. Clin. Psychopharmacol., 1994, 2, 345–395 http://dx.doi.org/10.1037/1064-1297.2.4.345CrossrefGoogle Scholar

  • [18] Eppolito A.K., Smith R.F., Long-term behavioral and developmental consequences of pre- and perinatal nicotine, Pharmacol. Biochem. Behav., 2006, 85, 835–841 http://dx.doi.org/10.1016/j.pbb.2006.11.020CrossrefGoogle Scholar

  • [19] Gallinat J., Lang U.E., Jacobsen L.K., Bajbouj M., Kalus P., von Haebler D., et al., Abnormal hippocampal neurochemistry in smokers: evidence from proton magnetic resonance spectroscopy at 3 T, J. Clin. Psychopharmacol., 2007, 27, 80–84 http://dx.doi.org/10.1097/JCP.0b013e31802dffdeCrossrefGoogle Scholar

  • [20] Oddo S., Caccamo A., Green K.N., Liang K., Tran L., Chen Y., et al., Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2005, 102, 3046–3051 http://dx.doi.org/10.1073/pnas.0408500102CrossrefGoogle Scholar

  • [21] Chong Z.Z., Li F., Maiese K., Stress in the brain: Novel cellular mechanisms of injury linked to Alzheimer’s disease, Brain Res. Rev., 2005, 49, 1–21 http://dx.doi.org/10.1016/j.brainresrev.2004.11.005CrossrefGoogle Scholar

  • [22] Mazza M., Pomponi M., Janiri L., Bria P., Mazza S., Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: An overview, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31, 12–26 http://dx.doi.org/10.1016/j.pnpbp.2006.07.010CrossrefGoogle Scholar

  • [23] Mariani E., Polidori M.C., Cherubini A., Mecocci P., Oxidative stress in brain aging, and degenerative and vascular diseases: An overview, J. Chromatogr. B, 2005, 27, 65–75 http://dx.doi.org/10.1016/j.jchromb.2005.04.023CrossrefGoogle Scholar

  • [24] Butterfield D.A., Perluigi M., Sultana R., Oxidative stress in Alzheimer’s disease brain: New insights from redox proteomics, Eur. J. Pharmacol., 2006, 545, 39–50 http://dx.doi.org/10.1016/j.ejphar.2006.06.026CrossrefGoogle Scholar

  • [25] Suleyman H., Gumustekin K., Taysi S., Keles S., Oztasan N., Aktas O., Beneficial effects of Hippophae rhamnoides L. on nicotine induced oxidative stress in rat blood compared with vitamin E, Biol. Pharm. Bull., 2002, 25, 1133–1136 http://dx.doi.org/10.1248/bpb.25.1133CrossrefGoogle Scholar

  • [26] Sudheer A.R., Kalpana C., Srinivasan M., Menon V.P., Ferulic acid modulates altered lipid profiles and prooxidant/antioxidant status in circulation during nicotine-induced toxicity: a dosedependent study, Toxicol. Mech. Method, 2005, 15, 375–381 http://dx.doi.org/10.1080/15376520500194783CrossrefGoogle Scholar

  • [27] Sudheer A.R., Muthukumaran S., Devipriya N., Menon V.P., Ellagic acid, a natural polyphenol protects rat peripheral blood lymphocytes against nicotine-induced cellular and DNA damage in vitro: with the comparison of N-acetylcysteine, Toxicology, 2007, 230, 11–21 http://dx.doi.org/10.1016/j.tox.2006.10.010CrossrefGoogle Scholar

  • [28] Srinivasan K.N., Pugalendi K.V., Effect of excessive intake of thermally oxidized sesame oil on lipids, lipid peroxidation and antioxidants status in rats, Indian J. Exp. Biol., 2000, 38, 777–780 Google Scholar

  • [29] Ashakumary L., Vijayammal P.L., Additive effect of alcohol and nicotine on lipid peroxidation and antioxidant defence mechanism in rats, J. Appl. Toxicol., 1996, 16, 305–308 http://dx.doi.org/10.1002/(SICI)1099-1263(199607)16:4<305::AID-JAT353>3.0.CO;2-FCrossrefGoogle Scholar

  • [30] Zhang J., Jiang S., Watson R.R., Antioxidant supplementation prevents oxidation and inflammatory responses induced by sidestream cigarette smoke in old mice, Environ. Health Perspect., 2001, 109, 1007–1009 http://dx.doi.org/10.2307/3454954CrossrefGoogle Scholar

  • [31] Muthukumaran S., Sudheer A.R., Menon V.P., Nalini N., Protective effect of quercetin on nicotine-induced prooxidant and antioxidant imbalance and DNA damage in Wistar rats, Toxicology, 2008, 243, 207–215 http://dx.doi.org/10.1016/j.tox.2007.10.006CrossrefGoogle Scholar

  • [32] Chattopadhyay K., Chattopadhyay B.D., Effect of nicotine on lipid profile, peroxidation & antioxidant enzymes in female rats with restricted dietary protein, Indian J. Med. Res., 2008, 127, 571–576 Google Scholar

  • [33] Zhang X.Y., Tan Y.L., Zhou D.F., Haile C.N., Wu G.Y., Cao L.Y., et al., Nicotine dependence, symptoms and oxidative stress in male patients with schizophrenia, Neuropsychopharmacology, 2007, 32, 2020–2024 http://dx.doi.org/10.1038/sj.npp.1301317CrossrefGoogle Scholar

  • [34] Halliwell H., Guttridge J.M.C., Free radicals and antioxidant protection: mechanisms and significance in toxicology and disease, Hum. Toxicol., 1988, 7, 7–13 http://dx.doi.org/10.1177/096032718800700102CrossrefGoogle Scholar

  • [35] Karelson E., Bogdanovic N., Garlind A., Winblad B., Zilmer K., Kullisaar T., et al., The cerebrocortical areas in normal brain aging and in Alzheimer’s disease: noticeable differences in the lipid peroxidation level and in antioxidant defense, Neurochem. Res., 2001, 26, 353–361 http://dx.doi.org/10.1023/A:1010942929678CrossrefGoogle Scholar

  • [36] Yamada K., Noda Y., Hasegawa T., Komori Y., Nikai T., Sugihara H., et al., The role of nitric oxide in dizocilpine-induced impairment of spontaneous alternation behavior in mice, J. Pharmacol. Exp. Ther., 1996, 276, 460–466 Google Scholar

  • [37] Hritcu L., Clicinschi M., Nabeshima T., Brain serotonin depletion impairs short-term memory, but not long-term memory in rats, Physiol. Behav., 2007, 91, 652–657 http://dx.doi.org/10.1016/j.physbeh.2007.03.028CrossrefGoogle Scholar

  • [38] Spilich G.J., June L., Renner J., Cigarette smoking and cognitive performance, Br. J. Addiction, 1992, 87, 1313–1326 http://dx.doi.org/10.1111/j.1360-0443.1992.tb02740.xCrossrefGoogle Scholar

  • [39] Guan Z.Z., Yu W.F., Nordberg A., Dual effects of nicotine on oxidative stress and neuroprotection in PC12 cells, Neurochem. Int., 2003, 43, 243–249 http://dx.doi.org/10.1016/S0197-0186(03)00009-3CrossrefGoogle Scholar

  • [40] Sachs C., Jonsson G., Mechanisms of action of 6-hydroxydopamine, Biochem. Pharmacol., 1975, 24, 1–8 http://dx.doi.org/10.1016/0006-2952(75)90304-4CrossrefGoogle Scholar

  • [41] Perumal A.S., Gopal V.B., Tordzro W.K., Cooper T.B., Cadet J.L., Vitamin E attenuates the toxic effects of 6-hydroxydopamine on free radical scavenging systems in rat brain, Brain Res. Bull., 1992, 29, 699–701 http://dx.doi.org/10.1016/0361-9230(92)90142-KCrossrefGoogle Scholar

  • [42] Kumar R., Agarwal A.K., Seth P.K., Free radical-generated neurotoxicity of 6-hydroxydopamine, J. Neurochem., 1995, 64, 1703–1707 http://dx.doi.org/10.1046/j.1471-4159.1995.64041703.xCrossrefGoogle Scholar

  • [43] Pre J., Floch A.L., Vassay R., Lenoble C., Increased plasma level of fluorescent lipid peroxidation products in cigarette smokers, Med. Sci. Res., 1989, 17, 1029–1030 Google Scholar

  • [44] Butterfield D.A., Lauderback C.M., Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress, Free Radic. Biol. Med., 2002, 32, 1050–1060 http://dx.doi.org/10.1016/S0891-5849(02)00794-3CrossrefGoogle Scholar

  • [45] Coyle J.T., Puttfarcken P., Oxidative stress, glutamate, and neurodegenerative disorders, Science, 1993, 262, 689–695 http://dx.doi.org/10.1126/science.7901908CrossrefGoogle Scholar

  • [46] Kim H.C., Jhoo W.K., Choi D.Y., Im D.H., Shin E.J., Suh J.H., et al., Protection of methamphetamine nigrostriatal toxicity by dietary selenium, Brain Res., 1999, 851, 76–86 http://dx.doi.org/10.1016/S0006-8993(99)02122-8CrossrefGoogle Scholar

  • [47] Guo J., Chu M., Abbeyquaye T., Chen C.Y., Persistent nicotine treatment potentiates amplification of the dihydrofolate reductase gene in rat lung epithelial cells as a consequence of Ras activation, J. Biol. Chem., 2005, 280, 30422–30431 http://dx.doi.org/10.1074/jbc.M504688200CrossrefGoogle Scholar

  • [48] Liu Q., Zhao B., Nicotine attenuates beta-amyloid peptide-induced neurotoxicity, free radical and calcium accumulation in hippocampal neuronal cultures, Br. J. Pharmacol., 2004, 141, 746–754 http://dx.doi.org/10.1038/sj.bjp.0705653CrossrefGoogle Scholar

  • [49] Jang M.H., Shin M.C., Jung S.B., Lee T.H., Bahn G.H., Kwon Y.K., et al., Alcohol and nicotine reduce cell proliferation and enhance apoptosis in dentate gyrus, Neuroreport, 2002, 13, 1509–1513 http://dx.doi.org/10.1097/00001756-200208270-00004CrossrefGoogle Scholar

About the article

Published Online: 2009-07-26

Published in Print: 2009-09-01


Citation Information: Open Life Sciences, Volume 4, Issue 3, Pages 335–342, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0029-x.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alin Ciobica, Radu Lefter, and Bogdan Stoica
Fiziolohichnyĭ zhurnal, 2017, Volume 63, Number 2, Page 25
[2]
Gadh Al-Basher, Jamaan S. Ajarem, Ahmed A. Allam, and Ayman M. Mahmoud
International Journal of Pharmacology, 2017, Volume 13, Number 2, Page 109
[3]
Majid Motaghinejad, Seyed Morteza Karimian, Ozra Motaghinejad, Behnaz Shabab, Majid Asadighaleni, and Sulail Fatima
Fundamental & Clinical Pharmacology, 2015, Volume 29, Number 3, Page 299
[4]
[5]
R.B. de Aguiar, G.M. Parfitt, J. Jaboinski, and D.M. Barros
Neuropharmacology, 2013, Volume 71, Page 292
[6]
D. Achitei, A. Ciobica, G. Balan, E. Gologan, C. Stanciu, and G. Stefanescu
Digestive Diseases and Sciences, 2013, Volume 58, Number 5, Page 1244
[7]
Lucian Hritcu, Marius Stefan, Roderich Brandsch, and Marius Mihasan
Journal of Physiology and Biochemistry, 2013, Volume 69, Number 1, Page 25
[8]
Alin Ciobica, Zenovia Olteanu, Manuela Padurariu, and Lucian Hritcu
Journal of Physiology and Biochemistry, 2012, Volume 68, Number 1, Page 59
[9]
Manuela Padurariu, Alin Ciobica, Irina Dobrin, and Cristinel Stefanescu
Neuroscience Letters, 2010, Volume 479, Number 3, Page 317
[10]
Lucian Hritcu, Alin Ciobica, Marius Stefan, Marius Mihasan, Lavinia Palamiuc, and Toshitaka Nabeshima
Neuroscience Research, 2011, Volume 71, Number 1, Page 35
[11]
Alin Ciobica, Veronica Bild, Lucian Hritcu, Manuela Padurariu, and Walther Bild
Open Medicine, 2011, Volume 6, Number 3

Comments (0)

Please log in or register to comment.
Log in