Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 4, Issue 3

Issues

Volume 10 (2015)

Lipopeptides as anti-infectives: a practical perspective

Giovanna Pirri / Andrea Giuliani / Silvia Nicoletto / Lorena Pizzuto / Andrea Rinaldi
Published Online: 2009-07-26 | DOI: https://doi.org/10.2478/s11535-009-0031-3

Abstract

Lipopeptide antibiotics represent an old class of antibiotics that were discovered over 50 years ago, which includes the old polymyxins but also new entries, such as the recently approved daptomycin. They generally consist of a hydrophilic cyclic peptide portion attached to a fatty acid chain which facilitates insertion into the lipid bilayer of bacterial membranes. This review presents an overview of this class of antibiotics, focusing on their therapeutic applications and putting particular emphasis on chemical modifications introduced to improve their activity.

Keywords: Lipopeptides; Antimicrobial peptides; Antibiotics; Semi-synthetic analogues; Daptomycin; Polymyxin; Echinocandin; Lipid membranes; LPS

  • [1] Nathan C., Goldberg F.M., The profit problem in antibiotic R&D, Nat. Rev. Drug Discov., 2005, 4, 887–891 http://dx.doi.org/10.1038/nrd1878CrossrefGoogle Scholar

  • [2] Payne D.J., Gwynn M.N., Holmes D.J., Pompliano D.L., Drugs for bad bugs: confronting the challenges of antibacterial discovery, Nat. Rev. Drug Discov., 2007, 6, 29–40 http://dx.doi.org/10.1038/nrd2201CrossrefGoogle Scholar

  • [3] Jerala R., Synthetic lipopeptides: a novel class of anti-infectives, Expert Opin. Investig. Drugs, 2007, 16, 1159–1169 http://dx.doi.org/10.1517/13543784.16.8.1159CrossrefGoogle Scholar

  • [4] Strieker M., Marahiel M.A., The structural diversity of acidic lipopeptide antibiotics, ChemBioChem, 2009, 10, 607–616 http://dx.doi.org/10.1002/cbic.200800546CrossrefGoogle Scholar

  • [5] Martin N.I., Hu H., Moake M.M., Churey J.J., Whittal R., Worobo R.W., et al., Isolation, structural characterization, and properties of Mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M, J. Biol. Chem., 2003, 278, 13124–13132 http://dx.doi.org/10.1074/jbc.M212364200CrossrefGoogle Scholar

  • [6] Arnold T.M., Forrest G.N., Messmer K.J., Polymyxin antibiotics for gram-negative infections, Am. J. Health Syst. Pharm., 2007, 64, 819–826 http://dx.doi.org/10.2146/ajhp060473CrossrefGoogle Scholar

  • [7] Zavascki A.P., Goldani L.Z., Li J., Nation R.L., Polymyxin B for the treatment of multidrugresistant pathogens: a critical review, J. Antimicrob. Chemother., 2007, 60, 1206–1215 http://dx.doi.org/10.1093/jac/dkm357CrossrefGoogle Scholar

  • [8] Denning D.W., Echinocandin antifungal drugs, Lancet, 2003, 362, 1142–1151 http://dx.doi.org/10.1016/S0140-6736(03)14472-8CrossrefGoogle Scholar

  • [9] Tossi A., Host defense peptides: roles and applications, Curr. Prot. Pept. Sci., 2005, 6, 1–3 http://dx.doi.org/10.2174/1389203053027539CrossrefGoogle Scholar

  • [10] Giuliani A., Pirri G., Fabiole Nicoletto S., Antimicrobial peptides: an overview of a promising class of therapeutics, Cent. Eur. J. Biol., 2007, 2, 1–33 http://dx.doi.org/10.2478/s11535-007-0010-5CrossrefGoogle Scholar

  • [11] Hancock R.E.W., Sahl H.-G., Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nat. Biotechnol., 2006, 24, 1551–1557 http://dx.doi.org/10.1038/nbt1267CrossrefGoogle Scholar

  • [12] Radek K., Gallo G., Antimicrobial peptides: natural effectors of the innate immune system, Semin. Immunopathol., 2007, 29, 27–43 http://dx.doi.org/10.1007/s00281-007-0064-5CrossrefGoogle Scholar

  • [13] Giuliani A., Pirri G., Bozzi A., Di Giulio A., Aschi M., Rinaldi A.C., Antimicrobial peptides: natural templates for synthetic membrane-active compounds, Cell. Mol. Life Sci., 2008, 65, 2450–2460 http://dx.doi.org/10.1007/s00018-008-8188-xCrossrefGoogle Scholar

  • [14] Scott R.W., DeGrado W.F., Tew G.N., De novo designed synthetic mimics of antimicrobial peptides, Curr. Opin. Biotechnol., 2008, 19, 620–627 http://dx.doi.org/10.1016/j.copbio.2008.10.013CrossrefGoogle Scholar

  • [15] Moyle P.M., Toth I., Self-adjuvanting lipopeptide vaccines, Curr. Med. Chem., 2008, 15, 505–516 http://dx.doi.org/10.2174/092986708783503249CrossrefGoogle Scholar

  • [16] Ongena M., Jacques P., Bacillus lipopeptides: versatile weapons for plant disease biocontrol, Trends Microbiol., 2007, 16, 115–125 http://dx.doi.org/10.1016/j.tim.2007.12.009CrossrefGoogle Scholar

  • [17] Debono M., Barnhart M., Carrelll C.B., Hoffmann J.A., Occolowitz J.L., Abbott B.J., et al., A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation, J. Antibiot. (Tokyo), 1987, 40, 761–777 Google Scholar

  • [18] Lakey J.H., Lea E.J., Rudd B.A., Wright H.M., Hopwood D.A., A new channel-forming antibiotic from Streptomyces coelicolor A3(2) which requires calcium for its activity, J. Gen. Microbiol., 1983, 129, 3565–3573 CrossrefGoogle Scholar

  • [19] Huber F.M., Pieper R.L., Tietz A.J., The formation of daptomycin by supplying decanoic acid to Streptomyces roseosporus cultures producing the antibiotic complex A21978C, J. Biotechnol., 1988, 7, 283–292 http://dx.doi.org/10.1016/0168-1656(88)90040-5CrossrefGoogle Scholar

  • [20] Baltz R.H., McHenney M.A. Hosted T.J., Genetics of lipopeptide antibiotic biosynthesis in Streptomyces fradiae A54145 and Streptomyces roseosporus A21978C, In: Developments in Industrial Microbiology, Baltz R.H., Hegeman G.D., Skatrud P.L., (Eds.), Society for Industrial Microbiology, Fairfax, VA, 1997 Google Scholar

  • [21] Debono M., Abbott B.J., Molloy R.M., Fukuda D.S., Hunt A.H., Daupert V.M., et al., Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032), J. Antibiot. (Tokyo), 1988, 41, 1093–1105 Google Scholar

  • [22] Gu J.-Q., Nguyen K.T., Gandhi C., Rajgarhia V., Baltz R.H., Brian P., et al., Structural characterization of daptomycin analogues A21978C1-3 (D-Asn11) produced by a recombinant Streptomyces roseosporus strain, J. Nat. Prod., 2007, 70, 233–240 http://dx.doi.org/10.1021/np0605135Google Scholar

  • [23] Cottagnoud P., Daptomycin: a new treatment for insidious due to gram-positive pathogens, Swiss Med. Wkly, 2008, 138, 93–99 Google Scholar

  • [24] Brody T.M., Larner J., Minneman K.P., Neu H.C., Human Pharmacology: Molecular to Clinical, Mosby, St. Louis, MO, 1994 Google Scholar

  • [25] Miao V., Coëffet-LeGal M.-F., Brian P., Brost R., Penn J., Whiting A., et al., Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry, Microbiology, 2005, 151, 1507–1523 http://dx.doi.org/10.1099/mic.0.27757-0CrossrefGoogle Scholar

  • [26] Boeck L.D., Fukuda D.S., Abbott B.J., Debono M., Deacylation of A21978C, an acidic lipopeptide antibiotic complex, by Actinoplanes utahensis, J. Antibiot., 1988, 41, 1085–1092 Google Scholar

  • [27] Siedlecki J., Hill J., Parr I., Yu X., Morytko M., Zhang Y., et al., Array synthesis of novel lipodepsipeptide, Bioorg. Med. Chem. Lett, 2003, 13, 4245–4249 http://dx.doi.org/10.1016/j.bmcl.2003.07.025CrossrefGoogle Scholar

  • [28] Grünewald J., Sieber S.A., Mahlert C., Linne U., Marahiel M.A., Synthesis and derivatization of daptomycin: a chemoenzymatic route to acidic lipopeptide antibiotics, J. Am. Chem. Soc., 2004, 126, 17025–17031 http://dx.doi.org/10.1021/ja045455tCrossrefGoogle Scholar

  • [29] Huber F.M., Berry D.M., Pieper R.L., Tietz A.J., The synthesis of A21978C analogs by Streptomyces roseosporus cultivated under carbon limitation and fed fatty acids, Biotech. Lett., 1990, 12, 789–792 http://dx.doi.org/10.1007/BF01022596CrossrefGoogle Scholar

  • [30] Huber F.M., Pieper R.L., Tietz A.J., Dispersal of insoluble fatty acid precursors in stirred bioreactors as a mechanism to control antibiotic factor distribution, In: Ho C.S., Oldshue J.Y., (Eds.), Biotechnology Processes — Scale up and Mixing, American Institute of Chemical Engineers, New York, 1987 Google Scholar

  • [31] Penn J., Li X., Whiting A., Latif M., Gibson T., Silva C.J., et al., Heterologous production of daptomycin in Streptomyces lividans, J. Ind. Microbiol. Biotechnol., 2006, 33, 121–128 http://dx.doi.org/10.1007/s10295-005-0033-8CrossrefGoogle Scholar

  • [32] Muangsiri W., Kirsch L.E., The kinetics of the alkaline degradation of daptomycin, J. Pharm. Sci., 2001, 90, 1066–1075 http://dx.doi.org/10.1002/jps.1060CrossrefGoogle Scholar

  • [33] Bechinger B., The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solidstate NMR spectroscopy, Biochim. Biophys. Acta, 1999, 1462, 157–183 http://dx.doi.org/10.1016/S0005-2736(99)00205-9CrossrefGoogle Scholar

  • [34] Bechinger B., Lohner K., Detergent-like actions of linear amphipathic cationic antimicrobial peptides, Biochim. Biophys. Acta, 2006, 1758, 1529–1539 http://dx.doi.org/10.1016/j.bbamem.2006.07.001CrossrefGoogle Scholar

  • [35] Ho S.W., Jung D., Calhoun J.R., Lear J.D., Okon M., Scott W.R.P., et al., Effect of divalent cations on the structure of the antibiotic daptomycin, Euro. Biophysics J., 2008, 37, 421–433. http://dx.doi.org/10.1007/s00249-007-0227-2CrossrefGoogle Scholar

  • [36] Jung D., Rozek A., Okon M., Hancock R.E.W., Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin, Chem. Biol., 2004, 11, 949–957 http://dx.doi.org/10.1016/j.chembiol.2004.04.020CrossrefGoogle Scholar

  • [37] Straus S.K., Hancock R.E., Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptide and lipopeptides, Biochim. Biophy. Acta, 2006, 1758, 1215–1223 http://dx.doi.org/10.1016/j.bbamem.2006.02.009CrossrefGoogle Scholar

  • [38] Jung D., Powers J.P., Straus S.K., Hancock R.E.W., Lipid-specific binding of the calcium-dependent antibiotic daptomycin leads to changes in lipid polymorphism of model membranes, Chem. Phys. Lipids, 2008, 154, 120–128 http://dx.doi.org/10.1016/j.chemphyslip.2008.04.004CrossrefGoogle Scholar

  • [39] Thorne G.M., Alder J., Daptomycin: a novel lipopeptide antibiotic, Clin. Microb. Newsletter, 2002, 25, 33–40 http://dx.doi.org/10.1016/S0196-4399(02)80007-1CrossrefGoogle Scholar

  • [40] Silverman J.A., Perlmutter N.G., Shapiro H.M., Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus, Antimicrob. Agents Chemother., 2003, 47, 2538–2544 http://dx.doi.org/10.1128/AAC.47.8.2538-2544.2003CrossrefGoogle Scholar

  • [41] Muthaiyan A., Silverman J.A., Jayaswal R.K., Wilkinson B.J., Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization, Antimicrob. Agents Chemother., 2008, 52, 980–990 http://dx.doi.org/10.1128/AAC.01121-07CrossrefGoogle Scholar

  • [42] English B.K., Maryniw E.M., Talati A.J., Meals E.A., Diminished macrophage inflammatory response to staphylococcus aureus isolates exposed to daptomycin versus vancomycin or oxacillin, Antimicrob. Agents Chemother., 2006, 50, 2225–2227 http://dx.doi.org/10.1128/AAC.01559-05CrossrefGoogle Scholar

  • [43] Kanafani Z.A., Corey G.R., Daptomycin: a rapidly bactericidal lipopeptide for the treatment of Grampositive infections, Expert Rev. Anti Infect. Ther., 2007, 5, 177–184 http://dx.doi.org/10.1586/14787210.5.2.177CrossrefGoogle Scholar

  • [44] Nguyen K.T., Ritz D., Gu J.-Q., Alexander D., Chu M., Miao V., et al., Combinatorial biosynthesis of novel antibiotics related to daptomycin, Proc. Natl. Acad. Sci. USA, 2006, 103, 17462–17467 http://dx.doi.org/10.1073/pnas.0608589103CrossrefGoogle Scholar

  • [45] Kopp F., Grunewald J., Mahlert C., Marahiel M.A., Chemoenzymetic design of acidic lipopeptide hybrids: new insights into the structure-activity relationship of daptomycin and A54145, Biochemistry, 2006, 45, 10474–10481 http://dx.doi.org/10.1021/bi0609422CrossrefGoogle Scholar

  • [46] Eliopoulos G.M., Willey S., Reiszner E., Spitzer P.G., Caputo G., Moellering R., In vitro and in vivo activity of LY 146032, a new cyclic lipopeptide antibiotic, Antimicrob. Agents Chemother., 1986, 30, 532–535 Google Scholar

  • [47] Andrew J.H., Wale M.C., Wale L.J., Greenwood D., The effect of cultural conditions on the activity of LY146032 against staphylococci and streptococci, J. Antimicrob. Chemother., 1987, 20, 213–221 http://dx.doi.org/10.1093/jac/20.2.213CrossrefGoogle Scholar

  • [48] Chow A.W., Cheng N., In vitro activities of daptomycin (LY146032) and paldimycin (U-70, 138F) against anaerobic Gram-positive bacteria, Antimicrob. Agents Chemother., 1988, 32, 788–790 Google Scholar

  • [49] Ball L.J., Goult C.M., Donarsi J.A., Micklefield J., Ramesh V., NMR strcture determination and calcium binding effects of lipopeptide antibiotic daptomycin”, Org. Biomol. Chem., 2004, 2, 1872–1878 http://dx.doi.org/10.1039/b402722aCrossrefGoogle Scholar

  • [50] Rotondi K.S., Gierasch L.M., A well defined amphipathic conformation for the calcium- free cyclic lipopeptide antibiotic, daptomycin, in aqueous solution, Biopolymers, 2005, 80, 374–385 http://dx.doi.org/10.1002/bip.20238CrossrefGoogle Scholar

  • [51] Scott W.R.P., Baek S.-B., Jung D., Hancock R.E.W., Straus S.K., NMR structural studies of the antibiotic lipopeptide daptomycin in DHPC micelles, Biochim. Biophys. Acta, 2007, 1768, 3116–3126 http://dx.doi.org/10.1016/j.bbamem.2007.08.034CrossrefGoogle Scholar

  • [52] Van Bambeke F., Mingeot-Leclercq M.P., Struelens M.J., Tulkens P.M. The bacterial envelope as a target for novel anti-MRSA antibiotics, Trends Pharmacol. Sci., 2008, 29, 124–134 CrossrefGoogle Scholar

  • [53] Doekel S., Coëffet-Le Gal M.-F., Gu J.-Q., Chu M., Baltz R.H., Brian P., Non-ribosomal peptide synthetase module fusions to produce derivatives of daptomycin in Streptomyces roseosporus, Microbiology, 2008, 154, 2872–2880 http://dx.doi.org/10.1099/mic.0.2008/020685-0CrossrefGoogle Scholar

  • [54] Kato A., Nakaya S., Kokubo N., Aiba Y., Ohashi Y., Hirata H., A new anti-MRSA antibiotic complex, WAP-8294A. I. Taxonomy, isolation and biological activities, J. Antibiot., 1998, 51, 929–935 Google Scholar

  • [55] Nakaya S., Ohashi Y., Hirata H., Fujii K., Harada K.-I., WAP-8294A2, A novel anti-MRSA antibiotic reduced by Lysobacter sp., J. Am. Chem. Soc., 1997, 119, 6680–6681 http://dx.doi.org/10.1021/ja970895oGoogle Scholar

  • [56] Kato A., Nakaya S., Suzuki N., Aiba Y., Kokubo N., Hirata H., et al., Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, 1997, 39th, 253, (Chem. Abstr., 1999, 131, 115328) Google Scholar

  • [57] Harada K.-I., Suzuki M., Kato A., Fuji K., Oka H., Ito Y., Separation of WAP-8294A components, a novel anti-methicillin-resistant Staphylococcus aureus antibiotic using high-speed counter-current chromatography, J. Chromat. A, 2001, 932, 75–81 http://dx.doi.org/10.1016/S0021-9673(01)01235-3CrossrefGoogle Scholar

  • [58] Jones T.S.G., Chemical evidence for the multiplicity of the antibiotics produced by Bacillus polymyxa, Annals of the New York Academy of Sciences, 1949, 51, 909–916 http://dx.doi.org/10.1111/j.1749-6632.1949.tb27317.xCrossrefGoogle Scholar

  • [59] Hausmann W., The Amino Acid Sequence of Polymyxin B1, J. Am. Chem. Soc., 1956, 78, 3663–3667 http://dx.doi.org/10.1021/ja01596a029CrossrefGoogle Scholar

  • [60] Biserte G.A, Dautrevaux M., Structure of polymyxin B, Bull. Soc. Chim. Biol.,1957, 795–812 Google Scholar

  • [61] Vogler K., Studer R.O., Lanz P., Lergier W., Böhni E., Total synthesis of two cyclodecapeptides exerting polymyxin-like activity, Experientia, 1961, 17, 223–224 http://dx.doi.org/10.1007/BF02160629CrossrefGoogle Scholar

  • [62] Orwa J.A., Govaerts C., Busson R., Roets E., Van Schepdael A., Hoogmartens J., Isolation and structural characterization of polymyxin B components, J. Chromat. A, 2001, 912, 369–373 http://dx.doi.org/10.1016/S0021-9673(01)00585-4CrossrefGoogle Scholar

  • [63] Li J., Nation R.L., Milne R.W., Turnidge J.D., Coulthard K., Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria, Int. J. Antimicrob. Agents, 2005, 25, 11–25 http://dx.doi.org/10.1016/j.ijantimicag.2004.10.001CrossrefGoogle Scholar

  • [64] Li J., Milne R.W., Nation R.L., Turnidge J.D., Coulthard K., Valentine J., Simple method for assaying colistin methanesulfonate in plasma and urine using high-performance liquid chromatography, Antimicrob. Agents Chemother., 2002, 46, 3304–3307 http://dx.doi.org/10.1128/AAC.46.10.3304-3307.2002CrossrefGoogle Scholar

  • [65] Duwe A.K., Rupar C.A., Horsman G.B., Vas S.I., In vitro cytotoxicity and antibiotic activity of polymyxin B nonapeptide, Antimicrob. Agents Chemother., 1996, 30, 340–341 Google Scholar

  • [66] Storm D.R., Rosenthal K.S., Swanson P.E., Polymyxin and related peptide antibiotics, Annu. Rev. Biochem., 1977, 46, 723–763 http://dx.doi.org/10.1146/annurev.bi.46.070177.003451CrossrefGoogle Scholar

  • [67] Danner R.L., Joiner K.A., Rubin M., Paterson W.H., Johnson N., Ayers K.M., et al., Purification, toxicity, and antiendotoxin activity of polymyxin B nonapeptide, Antimicrob. Agents Chemother. 1989, 33, 1428–1434 Google Scholar

  • [68] Vaara M., Agents that increase the permeability of the outer membrane, Microbiol. Rev., 1992, 56, 395–411 Google Scholar

  • [69] Vaara M., Vaara T., Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide, Nature, 1983, 303, 526–528 http://dx.doi.org/10.1038/303526a0CrossrefGoogle Scholar

  • [70] Vaara M., Vaara T., Polycations sensitize enteric bacteria to antibiotics, Antimicrob. Agents Chemother., 1983, 24, 107–113 Google Scholar

  • [71] Vaara M., Vaara T., Polycations as outer membrane-disorganizing agents, Antimicrob. Agents Chemother., 1983, 24, 114–122 Google Scholar

  • [72] Ito-Kagawa M., Koyama Y., Studies on the selectivity of action of colistin, colistin nonapeptide and colistin heptapeptide on the cell envelope of Escherichia coli, J. Antibiot., 1984, 37, 926–928 Google Scholar

  • [73] Lam C., Hildebrandt J., Schutze E., Wenzel A.F., Membrane-disorganizing property of polymyxin B nonapeptide, J. Antimicrob. Chemother., 1986, 18, 9–15 http://dx.doi.org/10.1093/jac/18.1.9CrossrefGoogle Scholar

  • [74] McCashion R.N., Lynch W.H., Effects of polymyxin B nonapeptide on Aeromonas salmonicida,Antimicrob. Agents Chemother., 1987, 31, 1414–1419 Google Scholar

  • [75] Kubesch P., Whesling M., Tummler B., Membrane permeability of Pseudomonas aeruginosa to 4-quinolones, Zentralbl. Bakteriol. Mikrobiol. Hyg. ABT. 1, 1987, 265, 197–202 Google Scholar

  • [76] Moestrup S.K., Cui S., Vorum H., Bregengård C., Bjorn S.E., Norris K., et al., Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs, J. Clin. Investig., 1995, 96, 1404–1413 http://dx.doi.org/10.1172/JCI118176CrossrefGoogle Scholar

  • [77] Vaara M., Fox J., Loidl G., Siikanen O., Apajalahti J., Hansen F., et al., Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents, Antimicrob. Agents Chemother., 2008, 52, 3229–3236 http://dx.doi.org/10.1128/AAC.00405-08CrossrefGoogle Scholar

  • [78] Tsubery H., Ofek I., Cohen S., Fridkin M., The functional association of polymyxin B with bacterial lipopolysaccharide is stereospecific: studies on polymyxin B nonapeptide, Biochemistry, 2000, 39, 11838–11844 http://dx.doi.org/10.1021/bi000386qCrossrefGoogle Scholar

  • [79] Heineman B., Kaplan M.A., Muir R.D., Hooper I.R., Amphomycin, a new antibiotic, Antibiot. Chemother., 1953, 3, 1239–1242 Google Scholar

  • [80] Bodanszky M., Chaturvedi N.C., Scozzie J.A., The structure of fatty acids from the antibiotic amphomycin, J. Antibiot., 1969, 22, 399–408 CrossrefGoogle Scholar

  • [81] Bodanszky M., Siegler G.F., Bodanszky A., Structure of the peptide antibiotic Amphomycin, J. Am. Chem. Soc., 1973, 95, 2352–2357 http://dx.doi.org/10.1021/ja00788a040CrossrefGoogle Scholar

  • [82] Wacowich-Sgarbi S.A., Boyd V.A., Cameron D.R., Chen Y., Dugourd D., Jia Q., et al., Synthesis and Structure-Activity Relationship (SAR) Studies on Dab-9 Substitutions of the Lipopeptide Antibiotic Amphomycin, presented at the 229th National ACS (American Chemical Society Meeting) Meeting & Exposition, San Diego, CA, 13–17 March 2005 Google Scholar

  • [83] Sgarbi P.W.M., Boyd V.A., Cameron D.R., Chen Y., Jia Q., Nodwell M., et al., Synthesis and structureactivity relationship (SAR) studies on the lipophilic tail of the lipopeptide antibiotic Amphomycin, presented at the 229th National ACS (American Chemical Society Meeting) Meeting & Exposition, San Diego, CA, 13–17 March 2005 Google Scholar

  • [84] Cameron D.R., Lipopeptides: SAR and synthesis of a new class of semi-synthetic antibiotics, presented at the 88th Canadian Chemistry Conference (CSC) and Exhibition, Saskatoon, CDN, 28 May–1 June 2005 Google Scholar

  • [85] Yang H., Clement J.J., Dugourd D., MX-2401 bactericidal activity and membrane depolarization in Staphylococcus epidermidis, F1-364, presented at the 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) and the concurrent 46th Annual Infectious Diseases Society of America (IDSA) meeting, Washington, DC, 25–28 October 2008 Google Scholar

  • [86] Benz F., Knusel F., Nuesch J., Treichler H., Voser W., Nyfeler R., et al., Echinocandin B, ein neuartiges Polypeptid-Antibiotikum aus Aspergillus nidulans var. echinulatus: Isolierung und Bausteine, Helv. Chim. Acta, 1974, 57, 2459–2477 http://dx.doi.org/10.1002/hlca.19740570818CrossrefGoogle Scholar

  • [87] Keller-Juslen C., Kuhn M., Loosli H.-R., Petcher T.J., Weber H.P., von Wartburg A., Struktur des Cyclopeptid-Antibiotikums SL 7810 (= Echinocandin B), Tetrahedron Lett., 1976, 4147–4150, (in German) Google Scholar

  • [88] Koyama G., The crystal and molecular structure of 3-hydroxy-4-methyl-proline, Helv. Chim. Acta, 1974, 57, 2477–2483 http://dx.doi.org/10.1002/hlca.19740570819CrossrefGoogle Scholar

  • [89] von Traber R., Keller-Juslen C., Loosli H.-R., Kuhn M., von Wartburg A., Cyclopeptid-Antibiotika aus Aspergillus-Arten. Struktur der Echinocandine C und D, Helv. Chim. Acta, 1979, 62, 1252–1267, (in German) http://dx.doi.org/10.1002/hlca.19790620436CrossrefGoogle Scholar

  • [90] Kurokawa N., Ohfune Y., Total synthesis of echinocandins. 1. Stereocontrolled syntheses of the constituent amino acids, J. Am. Chem. Soc., 1986, 108, 6041–6043 http://dx.doi.org/10.1021/ja00279a064CrossrefGoogle Scholar

  • [91] Kurokawa N., Ohfune Y., Total synthesis of Echinocandins. 2. Total synthesis of Echinocandins D via efficient peptide coupling reactions, J. Am. Chem. Soc., 1986, 108, 6043–6045 http://dx.doi.org/10.1021/ja00279a065CrossrefGoogle Scholar

  • [92] Balbovec J.M., Black R.M., Hammond M.L., Heck J.V., Zambias R.A., Abruzzo G., et al., Synthesis, Stability and biological evaluation of water soluble prodrugs of a new Echinocandin Lipopeptide. Discovery of a potential clinical agent for the treatment of systemic Candidiasis and Pneumocystis Carinii Pneumonia (PCP), J. Med. Chem, 1992, 35, 194–198 http://dx.doi.org/10.1021/jm00079a027CrossrefGoogle Scholar

  • [93] Taft C.S., Selitrennikoff C.P., Cilofungin Inhibition of (1,3)-β-glucan synthesis: the lipophilic side chain is essential for inhibition of enzyme activity, J. Antibiot., 1990, 43, 433–437 Google Scholar

  • [94] Debono M., Abbott B.J., Fukuda D.S., Barnhart M., Willard K.E., Molloy R.M., et al., Synthesis of new analogs of Echinocandin B by enzymatic deacylation and chemical reacylation of the Echinocandin B peptide: Synthesis of the antifungal agent Cilofungin (LY121019), J. Antibiot., 1989, 42, 389–397 Google Scholar

  • [95] Boeck L.D., Fukuda D.S., Abbott B.J., Debono M., Deacylation of Echinocandin B by Actinoplanes utahensis, J. Antibiot., 1989, 42, 382–388 CrossrefGoogle Scholar

  • [96] Debono M., Abbott B.J., Turner J.R., Howard L.C., Gordee R.S., Hunt A.H., et al., Synthesis and evaluation of LY121019, a member of a series of semi-synthetic analogues of the antifungal lipopeptide Echinocandin B, Ann. N.Y. Acad. Sci., 1988, 544, 152–167 http://dx.doi.org/10.1111/j.1749-6632.1988.tb40398.xCrossrefGoogle Scholar

  • [97] Diekema D.J., Petroelje B., Messer S.A., Hollis R.J., Pfaller M.A., Activity of available and investigational antifungal agents against Rhodotorula species, J. Clin. Microbiol., 2005, 43, 476–478 http://dx.doi.org/10.1128/JCM.43.1.476-478.2005CrossrefGoogle Scholar

  • [98] Nasto B., Biotech at the beauty counter, Nat. Biotechnol., 2007, 25, 617–619 http://dx.doi.org/10.1038/nbt0607-617CrossrefGoogle Scholar

  • [99] Rinaldi A., Healing beauty? More biotechnology cosmetic products that claim drug-like properties reach the market, EMBO Reports, 2008, 9, 1073–1077 http://dx.doi.org/10.1038/embor.2008.200CrossrefGoogle Scholar

  • [100] Nagarajan R., Schabel A.A., Occolowitz J.L., Counter F.T., Ott J.L., Felty-Duckworth A.M., Synthesis and antibacterial evaluation of N-alkyl vancomycins., J. Antibiot. (Tokyo), 1989, 42, 63–72 CrossrefGoogle Scholar

  • [101] Nagarajan R., Structure-activity relationships of vancomycin-type glycopeptide antibiotics, J. Antibiot. (Tokyo), 1993, 46, 1181–1195 CrossrefGoogle Scholar

  • [102] Higgins D.L., Chang R., Debabov D.V., Leung J., Wu T., Krause K.M., et al., Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2005, 49, 1127–1134 http://dx.doi.org/10.1128/AAC.49.3.1127-1134.2005CrossrefGoogle Scholar

  • [103] Leadbetter M.R., Adams S.M., Bazzini B., Fatheree P.R., Karr D.E., Krause K.M., et al., Hydrophobic vancomycin derivatives with improved ADME properties: discovery of telavancin (TD-6424), J. Antibiot. (Tokyo), 2004, 57, 326–336 Google Scholar

  • [104] Xiong Y.Q., Yeaman M.R., Bayer A.S., In vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action, Antimicrob. Agents Chemother., 1999, 43, 1111–1117 Google Scholar

  • [105] Yeaman M.R., Bayer A.S., Koo S.P., Foss W., Sullam P.M., Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action, J. Clin. Investig., 1998, 101, 178–187 http://dx.doi.org/10.1172/JCI562CrossrefGoogle Scholar

  • [106] Judice J.K., Pace J.L., Semi-synthetic glycopeptide antibacterials, Bioorg. Med. Chem. Lett., 2003, 13, 4165–4168 http://dx.doi.org/10.1016/j.bmcl.2003.08.067CrossrefGoogle Scholar

About the article

Published Online: 2009-07-26

Published in Print: 2009-09-01


Citation Information: Open Life Sciences, Volume 4, Issue 3, Pages 258–273, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0031-3.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hye Been Koo and Jiwon Seo
Peptide Science, 2019, Volume 111, Number 5
[2]
Berna Ozbek-Celik, Damla Damar-Celik, Emel Mataraci-Kara, Cagla Bozkurt-Guzel, and Paul B. Savage
Antibiotics, 2019, Volume 8, Number 3, Page 130
[3]
Pratiwi Sudarmono, Ahmad Wibisana, Lira W. Listriyani, and Saleha Sungkar
International Journal of Microbiology, 2019, Volume 2019, Page 1
[4]
Snizhana Olishevska, Arvin Nickzad, and Eric Déziel
Applied Microbiology and Biotechnology, 2019, Volume 103, Number 3, Page 1189
[5]
[6]
Sreyoshi Sur, Tod D. Romo, and Alan Grossfield
The Journal of Physical Chemistry B, 2018
[8]
Claudia Schinke, Thamires Martins, Sonia C. N. Queiroz, Itamar S. Melo, and Felix G. R. Reyes
Journal of Natural Products, 2017, Volume 80, Number 4, Page 1215
[9]
Eliane Tótoli and Hérida Salgado
Pharmaceutics, 2015, Volume 7, Number 3, Page 106
[10]
Mohini M. Konai, Utsarga Adhikary, Sandip Samaddar, Chandradhish Ghosh, and Jayanta Haldar
Bioconjugate Chemistry, 2015, Volume 26, Number 12, Page 2442
[11]
Stephen A. Cochrane, Richard R. Surgenor, Kevin M. W. Khey, and John C. Vederas
Organic Letters, 2015, Volume 17, Number 21, Page 5428
[12]
Jos M. Raaijmakers, Irene De Bruijn, Ole Nybroe, and Marc Ongena
FEMS Microbiology Reviews, 2010, Volume 34, Number 6, Page 1037
[13]
Mohini M. Konai, Chandradhish Ghosh, Venkateswarlu Yarlagadda, Sandip Samaddar, and Jayanta Haldar
Journal of Medicinal Chemistry, 2014, Volume 57, Number 22, Page 9409
[14]
Stephen A. Cochrane and John C. Vederas
International Journal of Antimicrobial Agents, 2014, Volume 44, Number 6, Page 493
[15]
Sílvia Vilà, Cristina Camó, Eduard Figueras, Esther Badosa, Emilio Montesinos, Marta Planas, and Lidia Feliu
European Journal of Organic Chemistry, 2014, Volume 2014, Number 22, Page 4785
[16]
Stephen A. Cochrane, Brandon Findlay, John C. Vederas, and Elaref S. Ratemi
ChemBioChem, 2014, Volume 15, Number 9, Page 1295
[17]
Garry Laverty, Sean P. Gorman, and Brendan F. Gilmore
International Journal of Molecular Sciences, 2011, Volume 12, Number 12, Page 6566
[18]
Wei-Ting Liu, Anne Lamsa, Weng Ruh Wong, Paul D Boudreau, Roland Kersten, Yao Peng, Wilna J Moree, Brendan M Duggan, Bradley S Moore, William H Gerwick, Roger G Linington, Kit Pogliano, and Pieter C Dorrestein
The Journal of Antibiotics, 2014, Volume 67, Number 1, Page 99
[19]
Matthias D’Hondt, Frederick Verbeke, Sofie Stalmans, Bert Gevaert, Evelien Wynendaele, and Bart De Spiegeleer
Journal of Pharmaceutical Analysis, 2014, Volume 4, Number 3, Page 173
[20]
Tanja Schneider, Anna Müller, Henrike Miess, and Harald Gross
International Journal of Medical Microbiology, 2014, Volume 304, Number 1, Page 37
[21]
Yan Wang, Guoliang Qian, Fengquan Liu, Yue-Zhong Li, Yuemao Shen, and Liangcheng Du
ACS Synthetic Biology, 2013, Volume 2, Number 11, Page 670
[22]
Sílvia Vilà, Esther Badosa, Emilio Montesinos, Lidia Feliu, and Marta Planas
Organic & Biomolecular Chemistry, 2013, Volume 11, Number 20, Page 3365
[23]
Su-Hyun Mun, Dae-Ki Joung, Yong-Sik Kim, Ok-Hwa Kang, Sung-Bae Kim, Yun-Soo Seo, Youn-Chul Kim, Dong-Sung Lee, Dong-Won Shin, Kee-Tae Kweon, and Dong-Yeul Kwon
Phytomedicine, 2013, Volume 20, Number 8-9, Page 714
[24]
Yunxuan Xie, Stephen Wright, Yuemao Shen, and Liangcheng Du
Natural Product Reports, 2012, Volume 29, Number 11, Page 1277
[25]
Jos M. Raaijmakers and Mark Mazzola
Annual Review of Phytopathology, 2012, Volume 50, Number 1, Page 403
[26]
A. Muthaiyan, E.M. Martin, S. Natesan, P.G. Crandall, B.J. Wilkinson, and S.C. Ricke
Journal of Applied Microbiology, 2012, Volume 112, Number 5, Page 1020
[27]
Katrin Reder-Christ, Yvonne Schmidt, Marius Dörr, Hans-Georg Sahl, Michaele Josten, Jos M. Raaijmakers, Harald Gross, and Gerd Bendas
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2012, Volume 1818, Number 3, Page 566
[28]
Jolanta Janiszewska, Marta Sowińska, Aleksandra Rajnisz, Jolanta Solecka, Izabela Łącka, Sławomir Milewski, and Zofia Urbańczyk-Lipkowska
Bioorganic & Medicinal Chemistry Letters, 2012, Volume 22, Number 3, Page 1388
[29]
Rui Ding, Xue-Chang Wu, Chao-Dong Qian, Yi Teng, Ou Li, Zha-Jun Zhan, and Yu-Hua Zhao
The Journal of Microbiology, 2011, Volume 49, Number 6, Page 942
[30]
Michela Bruschi, Giovanna Pirri, Andrea Giuliani, Silvia Fabiole Nicoletto, Izabela Baster, Mariano Andrea Scorciapino, Mariano Casu, and Andrea C. Rinaldi
Peptides, 2010, Volume 31, Number 8, Page 1459
[32]
Azusa Kato, Haruhisa Hirata, Yoshitami Ohashi, Kiyonaga Fujii, Kenji Mori, and Ken-ichi Harada
The Journal of Antibiotics, 2011, Volume 64, Number 5, Page 373
[33]
Karim Naghmouchi, Lyn Paterson, Bob Forster, Tim McAllister, Sam Ohene-Adjei, Djamel Drider, Ron Teather, and John Baah
Archives of Microbiology, 2011, Volume 193, Number 3, Page 169

Comments (0)

Please log in or register to comment.
Log in