Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 4, Issue 3


Volume 10 (2015)

Fungal septins: one ring to rule it all?

Alberto González-Novo
  • Department of Microbiology and Genetics, Institute of Microbiology and Biochemistry, Salamanca University/CSIC, 37007, Salamanca, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carlos Vázquez de Aldana
  • Department of Microbiology and Genetics, Institute of Microbiology and Biochemistry, Salamanca University/CSIC, 37007, Salamanca, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Javier Jiménez
  • Cell Signalling Unit, Department of Health and Experimental Sciences, Pompeu Fabra University, 08003, Barcelona, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-07-26 | DOI: https://doi.org/10.2478/s11535-009-0032-2


Septins are a conserved family of GTP-binding proteins found in living organisms ranging from yeasts to mammals. They are able to polymerize and form hetero-oligomers that assemble into higher-order structures whose detailed molecular architecture has recently been described in different organisms. In Saccharomyces cerevisiae, septins exert numerous functions throughout the cell cycle, serving as scaffolds for many different proteins or as diffusion barriers at the bud neck. In other fungi, septins are required for the proper completion of diverse functions such as polarized growth or pathogenesis. Recent results from several fungi have revealed important differences in septin organization and regulation as compared with S. cerevisiae, especially during Candida albicans hyphal growth and in Ashbya gossypii. Here we focus on these recent findings, their relevance in the biology of these eukaryotes and in consequence the “renaissance” of the study of septin structures in cells showing a different kind of morphological behaviour.

Keywords: Septins; Candida albicans; Saccharomyces cerevisiae; Morphogenesis; Filamentous fungi

  • [1] Hartwell L.H., Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis, Exp. Cell Res., 1971, 69, 265–276 http://dx.doi.org/10.1016/0014-4827(71)90223-0CrossrefGoogle Scholar

  • [2] Carroll C.W., Altman R., Schieltz D., Yates J.R., Kellogg D., The septins are required for the mitosisspecific activation of the Gin4 kinase, J. Cell Biol., 1998, 143, 709–717 http://dx.doi.org/10.1083/jcb.143.3.709CrossrefGoogle Scholar

  • [3] Mino A., Tanaka K., Kamei T., Umikawa M., Fujiwara T., Takai Y., Shs1p: a novel member of septin that interacts with Spa2p, involved in polarized growth in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun., 1998, 251, 732–736 http://dx.doi.org/10.1006/bbrc.1998.9541CrossrefGoogle Scholar

  • [4] De Virgilio C., DeMarini D.J., Pringle J.R., SPR28, a sixth member of the septin gene family in Saccharomyces cerevisiae that is expressed specifically in sporulating cells, Microbiology, 1996, 142, 2897–2905 http://dx.doi.org/10.1099/13500872-142-10-2897CrossrefGoogle Scholar

  • [5] Fares H., Goetsch L., Pringle J.R., Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae, J. Cell Biol., 1996, 132, 399–411 http://dx.doi.org/10.1083/jcb.132.3.399CrossrefGoogle Scholar

  • [6] Longtine M.S., Bi E., Regulation of septin organization and function in yeast, Trends Cell. Biol., 2003, 13, 403–409 http://dx.doi.org/10.1016/S0962-8924(03)00151-XCrossrefGoogle Scholar

  • [7] Longtine M.S., DeMarini D.J., Valencik M.L., Al-Awar O.S., Fares H., De Virgilio C., et al., The septins: roles in cytokinesis and other processes, Curr. Opin. Cell Biol., 1996, 8, 106–119 http://dx.doi.org/10.1016/S0955-0674(96)80054-8CrossrefGoogle Scholar

  • [8] Faty M., Fink M., Barral Y., Septins: a ring to part mother and daughter, Curr. Genet., 2002, 41, 123–131 http://dx.doi.org/10.1007/s00294-002-0304-0CrossrefGoogle Scholar

  • [9] Silverman-Gavrila R.V., Silverman-Gavrila L.B., Septins: new microtubule interacting partners, Scientific World Journal, 2008, 8, 611–620 Google Scholar

  • [10] Spiliotis E.T., Nelson W.J., Here come the septins: novel polymers that coordinate intracellular functions and organization, J. Cell Sci., 2006, 119, 4–10 http://dx.doi.org/10.1242/jcs.02746CrossrefGoogle Scholar

  • [11] Hall P.A., Russell S.E., The pathobiology of the septin gene family, J. Pathol., 2004, 204, 489–505 http://dx.doi.org/10.1002/path.1654CrossrefGoogle Scholar

  • [12] Kinoshita M., Assembly of mammalian septins, J. Biochem., 2003, 134, 491–496 http://dx.doi.org/10.1093/jb/mvg182CrossrefGoogle Scholar

  • [13] Kinoshita M., Diversity of septin scaffolds, Curr. Opin. Cell Biol., 2006, 18, 54–60 http://dx.doi.org/10.1016/j.ceb.2005.12.005CrossrefGoogle Scholar

  • [14] Martinez C., Ware J., Mammalian septin function in hemostasis and beyond, Exp. Biol. Med., 2004, 229, 1111–1119 Google Scholar

  • [15] Douglas L.M., Alvarez F.J., McCreary C., Konopka J.B., Septin function in yeast model systems and pathogenic fungi, Eukaryot. Cell, 2005, 4, 1503–1512 http://dx.doi.org/10.1128/EC.4.9.1503-1512.2005CrossrefGoogle Scholar

  • [16] Finger F.P., One ring to bind them. Septins and actin assembly, Dev. Cell., 2002, 3, 761–763 http://dx.doi.org/10.1016/S1534-5807(02)00371-4CrossrefGoogle Scholar

  • [17] Gladfelter A.S., Pringle J.R., Lew D.J., The septin cortex at the yeast mother-bud neck, Curr. Opin. Microbiol, 2001, 4, 681–689 http://dx.doi.org/10.1016/S1369-5274(01)00269-7CrossrefGoogle Scholar

  • [18] Kinoshita M., The septins, Genome Biol., 2003, 4, 236 http://dx.doi.org/10.1186/gb-2003-4-11-236CrossrefGoogle Scholar

  • [19] Versele M., Thorner J., Some assembly required: yeast septins provide the instruction manual, Trends Cell. Biol., 2005, 15, 414–424 http://dx.doi.org/10.1016/j.tcb.2005.06.007CrossrefGoogle Scholar

  • [20] Caudron F., Barral Y., Septins and the lateral compartmentalization of eukaryotic membranes, Dev. Cell., 2009, 16, 493–506 http://dx.doi.org/10.1016/j.devcel.2009.04.003CrossrefGoogle Scholar

  • [21] Gladfelter A.S., Sudbery P., Septins in four model fungal systems: diversity in form and function, In: Hall P.A., Hilary Russell S.E., Pringle J.R., (Eds.), The Septins, John Wiley & Sons, 2008, 125–146 Google Scholar

  • [22] Field C.M., Kellogg D., Septins: cytoskeletal polymers or signalling GTPases?, Trends Cell. Biol., 1999, 9, 387–394 http://dx.doi.org/10.1016/S0962-8924(99)01632-3CrossrefGoogle Scholar

  • [23] Versele M., Gullbrand B., Shulewitz M.J., Cid V.J., Bahmanyar S., Chen R.E., et al., Protein-protein interactions governing septin heteropentamer assembly and septin filament organization in Saccharomyces cerevisiae, Mol. Biol. Cell, 2004, 15, 4568–4583 http://dx.doi.org/10.1091/mbc.E04-04-0330CrossrefGoogle Scholar

  • [24] Casamayor A., Snyder M., Molecular dissection of a yeast septin: distinct domains are required for septin interaction, localization, and function, Mol. Cell. Biol., 2003, 23, 2762–2777 http://dx.doi.org/10.1128/MCB.23.8.2762-2777.2003CrossrefGoogle Scholar

  • [25] Zhang J., Kong C., Xie H., McPherson P.S., Grinstein S., Trimble W.S., Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP, Curr. Biol., 1999, 9, 1458–1467 http://dx.doi.org/10.1016/S0960-9822(00)80115-3CrossrefGoogle Scholar

  • [26] An H., Morrell J.L., Jennings J.L., Link A.J., Gould K.L., Requirements of fission yeast septins for complex formation, localization, and function, Mol. Biol. Cell, 2004, 15, 5551–5564 http://dx.doi.org/10.1091/mbc.E04-07-0640CrossrefGoogle Scholar

  • [27] Pan F., Malmberg R.L., Momany M., Analysis of septins across kingdoms reveals orthology and new motifs, BMC Evol. Biol., 2007, 7, 103 http://dx.doi.org/10.1186/1471-2148-7-103CrossrefGoogle Scholar

  • [28] Byers B., Goetsch L., A highly ordered ring of membrane-associated filaments in budding yeast, J. Cell Biol., 1976, 69, 717–721 http://dx.doi.org/10.1083/jcb.69.3.717CrossrefGoogle Scholar

  • [29] Cid V.J., Adamikova L., Sanchez M., Molina M., Nombela C., Cell cycle control of septin ring dynamics in the budding yeast, Microbiology, 2001, 147, 1437–1450 CrossrefGoogle Scholar

  • [30] Gladfelter A.S., Moskow J.J., Zyla T.R., Lew D.J., Isolation and characterization of effector-loop mutants of CDC42 in yeast, Mol. Biol. Cell, 2001, 12, 1239–1255 Google Scholar

  • [31] Iwase M., Luo J., Nagaraj S., Longtine M., Kim H.B., Haarer B.K., et al., Role of a Cdc42p effector pathway in recruitment of the yeast septins to the presumptive bud site, Mol. Biol. Cell, 2006, 17, 1110–1125 http://dx.doi.org/10.1091/mbc.E05-08-0793CrossrefGoogle Scholar

  • [32] Longtine M.S., Theesfeld C.L., McMillan J.N., Weaver E., Pringle J.R., Lew D.J., Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae, Mol. Cell. Biol., 2000, 20, 4049–4061 http://dx.doi.org/10.1128/MCB.20.11.4049-4061.2000CrossrefGoogle Scholar

  • [33] Mortensen E.M., McDonald H., Yates J.3rd, Kellogg D.R., Cell cycle-dependent assembly of a Gin4-septin complex, Mol. Biol. Cell, 2002, 13, 2091–2105 http://dx.doi.org/10.1091/mbc.01-10-0500CrossrefGoogle Scholar

  • [34] Versele M., Thorner J., Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4, J. Cell Biol., 2004, 164, 701–715 http://dx.doi.org/10.1083/jcb.200312070Google Scholar

  • [35] Bouquin N., Barral Y., Courbeyrette R., Blondel M., Snyder M., Mann C., Regulation of cytokinesis by the Elm1 protein kinase in Saccharomyces cerevisiae, J. Cell Sci., 2000, 113, 1435–1445 Google Scholar

  • [36] Cvrckova F., De Virgilio C., Manser E., Pringle J.R., Nasmyth K., Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast, Genes Dev., 1995, 9, 1817–1830 http://dx.doi.org/10.1101/gad.9.15.1817CrossrefGoogle Scholar

  • [37] Longtine M.S., Fares H., Pringle J.R., Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septin function, J. Cell Biol., 1998, 143, 719–736 http://dx.doi.org/10.1083/jcb.143.3.719CrossrefGoogle Scholar

  • [38] Weiss E.L., Bishop A.C., Shokat K.M., Drubin D.G., Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p, Nat. Cell. Biol., 2000, 2, 677–685 http://dx.doi.org/10.1038/35036300CrossrefGoogle Scholar

  • [39] Dobbelaere J., Gentry M.S., Hallberg R.L., Barral Y., Phosphorylation-dependent regulation of septin dynamics during the cell cycle, Dev. Cell., 2003, 4, 345–357 http://dx.doi.org/10.1016/S1534-5807(03)00061-3CrossrefGoogle Scholar

  • [40] Johnson E.S., Blobel G., Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins, J. Cell Biol., 1999, 147, 981–994 http://dx.doi.org/10.1083/jcb.147.5.981CrossrefGoogle Scholar

  • [41] Tang C.S., Reed S.I., Phosphorylation of the septin Cdc3 in G1 by the Cdc28 kinase is essential for efficient septin ring disassembly, Cell Cycle, 2002, 1, 42–49 Google Scholar

  • [42] Pablo-Hernando M.E., Arnáiz-Pita Y., Tachikawa H., del Rey F., Neiman A.M., Vázquez de Aldana C.R., Septins localize to microtubules during nutritional limitation in Saccharomyces cerevisiae, BMC Cell. Biol., 2008, 9, 55 http://dx.doi.org/10.1186/1471-2121-9-55CrossrefGoogle Scholar

  • [43] McMurray M.A., Thorner J., Septin stability and recycling during dynamic structural transitions in cell division and development, Curr. Biol., 2008, 18, 1203–1208 http://dx.doi.org/10.1016/j.cub.2008.07.020CrossrefGoogle Scholar

  • [44] McMurray M.A., Thorner J., Reuse, replace, recycle. Specificity in subunit inheritance and assembly of higher-order septin structures during mitotic and meiotic division in budding yeast, Cell Cycle, 2009, 8, 195–203 Google Scholar

  • [45] Field C.M., al-Awar O., Rosenblatt J., Wong M.L., Alberts B., Mitchison T.J., A purified Drosophila septin complex forms filaments and exhibits GTPase activity, J. Cell Biol., 1996, 133, 605–616 http://dx.doi.org/10.1083/jcb.133.3.605CrossrefGoogle Scholar

  • [46] Frazier J.A., Wong M.L., Longtine M.S., Pringle J.R., Mann M., Mitchison T.J., et al., Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function, J. Cell Biol., 1998, 143, 737–749 http://dx.doi.org/10.1083/jcb.143.3.737CrossrefGoogle Scholar

  • [47] Kinoshita M., Field C.M., Coughlin M.L., Straight A.F., Mitchison T.J., Self- and actin-templated assembly of mammalian septins, Dev. Cell., 2002, 3, 791–802 http://dx.doi.org/10.1016/S1534-5807(02)00366-0CrossrefGoogle Scholar

  • [48] Mendoza M., Hyman A.A., Glotzer M., GTP binding induces filament assembly of a recombinant septin, Curr. Biol., 2002, 12, 1858–1863 http://dx.doi.org/10.1016/S0960-9822(02)01258-7CrossrefGoogle Scholar

  • [49] Bertin A., McMurray M.A., Grob P., Park S.S., Garcia G.3rd, Patanwala I., et al., Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly, Proc. Natl. Acad. Sci. USA, 2008, 105, 8274–8279 http://dx.doi.org/10.1073/pnas.0803330105CrossrefGoogle Scholar

  • [50] Sirajuddin M., Farkasovsky M., Hauer F., Kuhlmann D., Macara I.G., Weyand M., et al., Structural insight into filament formation by mammalian septins, Nature, 2007, 449, 311–315 http://dx.doi.org/10.1038/nature06052CrossrefGoogle Scholar

  • [51] John C.M., Hite R.K., Weirich C.S., Fitzgerald D.J., Jawhari H., Faty M., et al., The Caenorhabditis elegans septin complex is nonpolar, EMBO J., 2007, 26, 3296–3307 http://dx.doi.org/10.1038/sj.emboj.7601775CrossrefGoogle Scholar

  • [52] Barral Y., Kinoshita M., Structural insights shed light onto septin assemblies and function, Curr. Opin. Cell Biol., 2008, 20, 12–18 http://dx.doi.org/10.1016/j.ceb.2007.12.001CrossrefGoogle Scholar

  • [53] Weirich C.S., Erzberger J.P., Barral Y., The septin family of GTPases: architecture and dynamics, Nat. Rev. Mol. Cell. Biol., 2008, 9, 478–489 http://dx.doi.org/10.1038/nrm2407CrossrefGoogle Scholar

  • [54] Nagaraj S., Rajendran A., Jackson C.E., Longtine M.S., Role of nucleotide binding in septinseptin interactions and septin localization in Saccharomyces cerevisiae, Mol. Cell. Biol., 2008, 28, 5120–5137 http://dx.doi.org/10.1128/MCB.00786-08CrossrefGoogle Scholar

  • [55] Iwase M., Luo J., Bi E., Toh-e A., Shs1 plays separable roles in septin organization and cytokinesis in Saccharomyces cerevisiae, Genetics, 2007, 177, 215–229 http://dx.doi.org/10.1534/genetics.107.073007CrossrefGoogle Scholar

  • [56] Caviston J.P., Longtine M., Pringle J.R., Bi E., The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast, Mol. Biol. Cell, 2003, 14, 4051–4066 http://dx.doi.org/10.1091/mbc.E03-04-0247CrossrefGoogle Scholar

  • [57] Vrabioiu A.M., Mitchison T.J., Structural insights into yeast septin organization from polarized fluorescence microscopy, Nature, 2006, 443, 466–469 http://dx.doi.org/10.1038/nature05109CrossrefGoogle Scholar

  • [58] Keaton M.A., Lew D.J., Eavesdropping on the cytoskeleton: progress and controversy in the yeast morphogenesis checkpoint, Curr. Opin. Microbiol, 2006, 9, 540–546 http://dx.doi.org/10.1016/j.mib.2006.10.004CrossrefGoogle Scholar

  • [59] Chant J., Generation of cell polarity in yeast, Curr. Opin. Cell Biol., 1996, 8, 557–565 http://dx.doi.org/10.1016/S0955-0674(96)80035-4CrossrefGoogle Scholar

  • [60] Ford S.K., Pringle J.R., Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC11 gene product and the timing of events at the budding site, Dev. Genet., 1991, 12, 281–292 http://dx.doi.org/10.1002/dvg.1020120405CrossrefGoogle Scholar

  • [61] Halme A., Michelitch M., Mitchell E.L., Chant J., Bud10p directs axial cell polarization in budding yeast and resembles a transmembrane receptor, Curr. Biol., 1996, 6, 570–579 http://dx.doi.org/10.1016/S0960-9822(02)00543-2CrossrefGoogle Scholar

  • [62] Kang P.J., Sanson A., Lee B., Park H.O., A GDP/GTP exchange factor involved in linking a spatial landmark to cell polarity, Science, 2001, 292, 1376–1378 http://dx.doi.org/10.1126/science.1060360CrossrefGoogle Scholar

  • [63] Roemer T., Vallier L.G., Snyder M., Selection of polarized growth sites in yeast, Trends Cell. Biol., 1996, 6, 434–441 http://dx.doi.org/10.1016/S0962-8924(96)10039-8CrossrefGoogle Scholar

  • [64] Sanders S.L., Herskowitz I., The BUD4 protein of yeast, required for axial budding, is localized to the mother/BUD neck in a cell cycle-dependent manner, J. Cell Biol., 1996, 134, 413–427 http://dx.doi.org/10.1083/jcb.134.2.413CrossrefGoogle Scholar

  • [65] Castillon G.A., Adames N.R., Rosello C.H., Seidel H.S., Longtine M.S., Cooper J.A., et al., Septins have a dual role in controlling mitotic exit in budding yeast, Curr. Biol., 2003, 13, 654–658 http://dx.doi.org/10.1016/S0960-9822(03)00247-1CrossrefGoogle Scholar

  • [66] Grava S., Schaerer F., Faty M., Philippsen P., Barral Y., Asymmetric recruitment of dynein to spindle poles and microtubules promotes proper spindle orientation in yeast, Dev. Cell., 2006, 10, 425–439 http://dx.doi.org/10.1016/j.devcel.2006.02.018CrossrefGoogle Scholar

  • [67] Kusch J., Meyer A., Snyder M.P., Barral Y., Microtubule capture by the cleavage apparatus is required for proper spindle positioning in yeast, Genes Dev., 2002, 16, 1627–1639 http://dx.doi.org/10.1101/gad.222602CrossrefGoogle Scholar

  • [68] Barral Y., Parra M., Bidlingmaier S., Snyder M., Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast, Genes Dev., 1999, 13, 176–187 http://dx.doi.org/10.1101/gad.13.2.176CrossrefGoogle Scholar

  • [69] Hanrahan J., Snyder M., Cytoskeletal activation of a checkpoint kinase, Mol. Cell, 2003, 12, 663–673 http://dx.doi.org/10.1016/j.molcel.2003.08.006CrossrefGoogle Scholar

  • [70] Lew D.J., The morphogenesis checkpoint: how yeast cells watch their figures, Curr. Opin. Cell Biol., 2003, 15, 648–653 http://dx.doi.org/10.1016/j.ceb.2003.09.001CrossrefGoogle Scholar

  • [71] Cid V.J., Shulewitz M.J., McDonald K.L., Thorner J., Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle, Mol. Biol. Cell, 2001, 12, 1645–1669 CrossrefGoogle Scholar

  • [72] Shulewitz M.J., Inouye C.J., Thorner J., Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae, Mol. Cell. Biol., 1999, 19, 7123–7137 Google Scholar

  • [73] Moffat J., Andrews B., Ac’septin’ a signal: kinase regulation by septins, Dev. Cell., 2003, 5, 528–530 http://dx.doi.org/10.1016/S1534-5807(03)00301-0CrossrefGoogle Scholar

  • [74] Kozubowski L., Larson J.R., Tatchell K., Role of the septin ring in the asymmetric localization of proteins at the mother-bud neck in Saccharomyces cerevisiae, Mol. Biol. Cell, 2005, 16, 3455–3466 http://dx.doi.org/10.1091/mbc.E04-09-0764CrossrefGoogle Scholar

  • [75] Vrabioiu A.M., Mitchison T.J., Symmetry of septin hourglass and ring structures, J. Mol. Biol., 2007, 372, 37–49 http://dx.doi.org/10.1016/j.jmb.2007.05.100CrossrefGoogle Scholar

  • [76] Barral Y., Mermall V., Mooseker M.S., Snyder M., Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast, Mol. Cell, 2000, 5, 841–851 http://dx.doi.org/10.1016/S1097-2765(00)80324-XCrossrefGoogle Scholar

  • [77] Seshan A., Bardin A.J., Amon A., Control of Lte1 localization by cell polarity determinants and Cdc14, Curr. Biol., 2002, 12, 2098–2110 http://dx.doi.org/10.1016/S0960-9822(02)01388-XCrossrefGoogle Scholar

  • [78] Takizawa P.A., DeRisi J.L., Wilhelm J.E., Vale R.D., Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier, Science, 2000, 290, 341–344 http://dx.doi.org/10.1126/science.290.5490.341CrossrefGoogle Scholar

  • [79] Dobbelaere J., Barral Y., Spatial coordination of cytokinetic events by compartmentalization of the cell cortex, Science, 2004, 305, 393–396 http://dx.doi.org/10.1126/science.1099892CrossrefGoogle Scholar

  • [80] Luedeke C., Frei S.B., Sbalzarini I., Schwarz H., Spang A., Barral Y., Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth, J. Cell Biol., 2005, 169, 897–908 http://dx.doi.org/10.1083/jcb.200412143CrossrefGoogle Scholar

  • [81] Shcheprova Z., Baldi S., Frei S.B., Gonnet G., Barral Y., A mechanism for asymmetric segregation of age during yeast budding, Nature, 2008, 454, 728–734 Google Scholar

  • [82] Soll D.R., Mitchell L.H., Filament ring formation in the dimorphic yeast Candida albicans, J. Cell Biol., 1983, 96, 486–493 http://dx.doi.org/10.1083/jcb.96.2.486CrossrefGoogle Scholar

  • [83] Warenda A.J., Konopka J.B., Septin function in Candida albicans morphogenesis, Mol. Biol. Cell, 2002, 13, 2732–2746 http://dx.doi.org/10.1091/mbc.E02-01-0013CrossrefGoogle Scholar

  • [84] González-Novo A., Correa-Bordes J., Labrador L., Sánchez M., Vázquez de Aldana C.R., Jiménez J., Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth, Mol. Biol. Cell, 2008, 19, 1509–1518 http://dx.doi.org/10.1091/mbc.E07-09-0876CrossrefGoogle Scholar

  • [85] Sudbery P.E., The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization, Mol. Microbiol., 2001, 41, 19–31 http://dx.doi.org/10.1046/j.1365-2958.2001.02459.xCrossrefGoogle Scholar

  • [86] González-Novo A., Jiménez J., García M.J., Ríos-Serrano I., Pla J., Jiménez A., et al., Dynamics of CaCdc10, a septin of Candida albicans, in living cells and during infection, Int. Microbiol., 2004, 7, 105–112 Google Scholar

  • [87] Liu H., Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen, Int. J. Med. Microbiol., 2002, 292, 299–311 http://dx.doi.org/10.1078/1438-4221-00215CrossrefGoogle Scholar

  • [88] Lo H.J., Kohler J.R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G.R., Nonfilamentous C. albicans mutants are avirulent, Cell, 1997, 90, 939–949 http://dx.doi.org/10.1016/S0092-8674(00)80358-XCrossrefGoogle Scholar

  • [89] Odds F.C., Candida and candidosis, 2nd ed., Bailliére Tindall, London, 1988 Google Scholar

  • [90] Berman J., Sudbery P.E., Candida albicans: A molecular revolution built on lessons from budding yeast, Nat. Rev. Genet., 2002, 3, 918–932 http://dx.doi.org/10.1038/nrg948CrossrefGoogle Scholar

  • [91] Sudbery P., Gow N., Berman J., The distinct morphogenic states of Candida albicans, Trends Microbiol., 2004, 12, 317–324 http://dx.doi.org/10.1016/j.tim.2004.05.008CrossrefGoogle Scholar

  • [92] González-Novo A., Labrador L., Jiménez A., Sánchez-Pérez M., Jiménez J., Role of the septin Cdc10 in the virulence of Candida albicans, Microbiol. Immunol., 2006, 50, 499–511 Google Scholar

  • [93] Warenda A.J., Kauffman S., Sherrill T.P., Becker J.M., Konopka J.B., Candida albicans septin mutants are defective for invasive growth and virulence, Infect. Immun., 2003, 71, 4045–4051 http://dx.doi.org/10.1128/IAI.71.7.4045-4051.2003CrossrefGoogle Scholar

  • [94] Sinha I., Wang Y.M., Philp R., Li C.R., Yap W.H., Wang Y., Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development, Dev. Cell., 2007, 13, 421–432 http://dx.doi.org/10.1016/j.devcel.2007.06.011CrossrefGoogle Scholar

  • [95] Clemente-Blanco A., González-Novo A., Machin F., Caballero-Lima D., Aragón L., Sánchez M., et al., The Cdc14p phosphatase affects late cell-cycle events and morphogenesis in Candida albicans, J. Cell Sci., 2006, 119, 1130–1143 http://dx.doi.org/10.1242/jcs.02820CrossrefGoogle Scholar

  • [96] Dunkler A., Walther A., Specht C.A., Wendland J., Candida albicans CHT3 encodes the functional homolog of the Cts1 chitinase of Saccharomyces cerevisiae, Fungal Genet. Biol., 2005, 42, 935–947 http://dx.doi.org/10.1016/j.fgb.2005.08.001CrossrefGoogle Scholar

  • [97] Esteban P.F., Rios I., Garcia R., Dueñas E., Pla J., Sánchez M., et al., Characterization of the CaENG1 gene encoding an endo-1,3-β-glucanase involved in cell separation in Candida albicans, Curr. Microbiol., 2005, 51, 385–392 http://dx.doi.org/10.1007/s00284-005-0066-2CrossrefGoogle Scholar

  • [98] Kelly M.T., MacCallum D.M., Clancy S.D., Odds F.C., Brown A.J., Butler G., The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence, Mol. Microbiol., 2004, 53, 969–983 http://dx.doi.org/10.1111/j.1365-2958.2004.04185.xCrossrefGoogle Scholar

  • [99] Egelhofer T.A., Villen J., McCusker D., Gygi S.P., Kellogg D.R., The septins function in G1 pathways that influence the pattern of cell growth in budding yeast, PLoS ONE, 2008, 3, e2022 http://dx.doi.org/10.1371/journal.pone.0002022CrossrefGoogle Scholar

  • [100] Gladfelter A.S., Kozubowski L., Zyla T.R., Lew D.J., Interplay between septin organization, cell cycle and cell shape in yeast, J. Cell Sci., 2005, 118, 1617–1628 http://dx.doi.org/10.1242/jcs.02286CrossrefGoogle Scholar

  • [101] Li C.R., Lee R.T., Wang Y.M., Zheng X.D., Wang Y., Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation, J. Cell Sci., 2007, 120, 1898–1907 http://dx.doi.org/10.1242/jcs.002931CrossrefGoogle Scholar

  • [102] Sudbery P., Morphogenesis of a human fungal pathogen requires septin phosphorylation, Dev. Cell., 2007, 13, 315–316 http://dx.doi.org/10.1016/j.devcel.2007.08.009CrossrefGoogle Scholar

  • [103] Gale C., Gerami-Nejad M., McClellan M., Vandoninck S., Longtine M.S., Berman J., Candida albicans Int1p interacts with the septin ring in yeast and hyphal cells, Mol. Biol. Cell, 2001, 12, 3538–3549 CrossrefGoogle Scholar

  • [104] Martin S.W., Konopka J.B., Lipid raft polarization contributes to hyphal growth in Candida albicans, Eukaryot. Cell, 2004, 3, 675–684 http://dx.doi.org/10.1128/EC.3.3.675-684.2004CrossrefGoogle Scholar

  • [105] Wightman R., Bates S., Amornrrattanapan P., Sudbery P., In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization, J. Cell Biol., 2004, 164, 581–591 http://dx.doi.org/10.1083/jcb.200307176CrossrefGoogle Scholar

  • [106] Court H., Sudbery P., Regulation of Cdc42 GTPase activity in the formation of hyphae in Candida albicans, Mol. Biol. Cell, 2007, 18, 265–281 http://dx.doi.org/10.1091/mbc.E06-05-0411CrossrefGoogle Scholar

  • [107] Martin S.W., Konopka J.B., SUMO modification of septin-interacting proteins in Candida albicans, J. Biol. Chem., 2004, 279, 40861–40867 http://dx.doi.org/10.1074/jbc.M406422200CrossrefGoogle Scholar

  • [108] Wendland J., Walther A., Ashbya gossypii: a model for fungal developmental biology, Nat. Rev. Microbiol., 2005, 3, 421–429 http://dx.doi.org/10.1038/nrmicro1148CrossrefGoogle Scholar

  • [109] Helfer H., Gladfelter A.S., AgSwe1p regulates mitosis in response to morphogenesis and nutrients in multinucleated Ashbya gossypii cells, Mol. Biol. Cell, 2006, 17, 4494–4512 http://dx.doi.org/10.1091/mbc.E06-03-0215CrossrefGoogle Scholar

  • [110] Kaufmann A., Philippsen P., Of bars and rings: Hof1-dependent cytokinesis in multiseptated hyphae of Ashbya gossypii, Mol. Cell. Biol., 2009, 29, 771–783 http://dx.doi.org/10.1128/MCB.01150-08CrossrefGoogle Scholar

  • [111] Gladfelter A.S., Control of filamentous fungal cell shape by septins and formins, Nat. Rev. Microbiol., 2006, 4, 223–229 http://dx.doi.org/10.1038/nrmicro1345CrossrefGoogle Scholar

  • [112] DeMay B.S., Meseroll R.A., Occhipinti P., Gladfelter A.S., Regulation of distinct septin rings in a single cell by Elm1p and Gin4p kinases, Mol. Biol. Cell, 2009, 20, 2311–2326 http://dx.doi.org/10.1091/mbc.E08-12-1169CrossrefGoogle Scholar

  • [113] Finley K.R., Berman J., Microtubules in Candida albicans hyphae drive nuclear dynamics and connect cell cycle progression to morphogenesis, Eukaryot. Cell, 2005, 4, 1697–1711 http://dx.doi.org/10.1128/EC.4.10.1697-1711.2005CrossrefGoogle Scholar

  • [114] Westfall P.J., Momany M., Aspergillus nidulans septin AspB plays pre- and postmitotic roles in septum, branch, and conidiophore development, Mol. Biol. Cell, 2002, 13, 110–118 http://dx.doi.org/10.1091/mbc.01-06-0312CrossrefGoogle Scholar

  • [115] Boyce K.J., Chang H., D’souza C.A., Kronstad J.W., An Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize, Eukaryot. Cell, 2005, 4, 2044–2056 http://dx.doi.org/10.1128/EC.4.12.2044-2056.2005CrossrefGoogle Scholar

  • [116] Canovas D., Perez-Martin J., Sphingolipid biosynthesis is required for polar growth in the dimorphic phytopathogen Ustilago maydis, Fungal Genet. Biol., 2009, 46, 190–200 http://dx.doi.org/10.1016/j.fgb.2008.11.003CrossrefGoogle Scholar

  • [117] Berlin A., Paoletti A., Chang F., Mid2p stabilizes septin rings during cytokinesis in fission yeast, J. Cell Biol., 2003, 160, 1083–1092 http://dx.doi.org/10.1083/jcb.200212016CrossrefGoogle Scholar

  • [118] Tasto J.J., Morrell J.L., Gould K.L., An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation, J. Cell Biol., 2003, 160, 1093–1103 http://dx.doi.org/10.1083/jcb.200211126CrossrefGoogle Scholar

  • [119] Dekker N., Speijer D., Grun C.H., van den Berg M., de Haan A., Hochstenbach F., Role of the α-glucanase Agn1p in fission-yeast cell separation, Mol. Biol. Cell, 2004, 15, 3903–3914 http://dx.doi.org/10.1091/mbc.E04-04-0319CrossrefGoogle Scholar

  • [120] Martin-Cuadrado A.B., Duenas E., Sipiczki M., Vazquez de Aldana C.R., del Rey F., The endo-β-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe, J. Cell Sci., 2003, 116, 1689–1698 http://dx.doi.org/10.1242/jcs.00377CrossrefGoogle Scholar

  • [121] Martín-Cuadrado A.B., Morrell J.L., Konomi M., An H., Petit C., Osumi M., et al., Role of septins and the exocyst complex in the function of hydrolytic enzymes responsible for fission yeast cell separation, Mol. Biol. Cell, 2005, 16, 4867–4881 http://dx.doi.org/10.1091/mbc.E04-12-1114CrossrefGoogle Scholar

  • [122] Petit C.S., Mehta S., Roberts R.H., Gould K.L., Ace2p contributes to fission yeast septin ring assembly by regulating mid2+ expression, J. Cell Sci., 2005, 118, 5731–5742 http://dx.doi.org/10.1242/jcs.02687CrossrefGoogle Scholar

  • [123] Dong Z., Ferger B., Paterna J.C., Vogel D., Furler S., Osinde M., et al., Dopamine-dependent neurodegeneration in rats induced by viral vectormediated overexpression of the parkin target protein, CDCrel-1, Proc. Natl. Acad. Sci. USA, 2003, 100, 12438–12443 http://dx.doi.org/10.1073/pnas.2132992100Google Scholar

  • [124] Kinoshita A., Kinoshita M., Akiyama H., Tomimoto H., Akiguchi I., Kumar S., et al., Identification of septins in neurofibrillary tangles in Alzheimer’s disease, Am. J. Pathol., 1998, 153, 1551–1560 Google Scholar

  • [125] Kuhlenbaumer G., Hannibal M.C., Nelis E., Schirmacher A., Verpoorten N., Meuleman J., et al., Mutations in SEPT9 cause hereditary neuralgic amyotrophy, Nat. Genet., 2005, 37, 1044–1046 http://dx.doi.org/10.1038/ng1649CrossrefGoogle Scholar

About the article

Published Online: 2009-07-26

Published in Print: 2009-09-01

Citation Information: Open Life Sciences, Volume 4, Issue 3, Pages 274–289, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0032-2.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Rosa R. Mouriño-Pérez
Fungal Biology Reviews, 2013, Volume 27, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in