Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 4, Issue 4

Issues

Volume 10 (2015)

Abdominal setae and midgut bacteria of the mudshrimp Pestarella tyrrhena

Alexandra Demiri
  • Department of Zoology — Marine Biology, School of Biology, University of Athens, 157 84, Panepistimiopoli Zografou, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexandra Meziti
  • Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46, Nea Ionia, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sokratis Papaspyrou
  • Department of Zoology — Marine Biology, School of Biology, University of Athens, 157 84, Panepistimiopoli Zografou, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Thessalou-Legaki
  • Department of Zoology — Marine Biology, School of Biology, University of Athens, 157 84, Panepistimiopoli Zografou, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Konstantinos Kormas
  • Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46, Nea Ionia, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-11-06 | DOI: https://doi.org/10.2478/s11535-009-0053-x

Abstract

We investigated the diversity of the bacterial 16S rRNA genes occurring on the abdominal setal tufts and in the emptied midgut of the marine mudshrimp Pestarella tyrrhena (Decapoda: Thalassinidea). There were no dominant phylotypes on the setal tufts. The majority of the phylotypes belonged to the phylum Bacteroidetes, frequently occurring in the water column. The rest of the phylotypes were related to anoxygenic photosynthetic α-Proteobacteria and to Actinobacteria. This bacterial profile seems more of a marine assemblage rather than a specific one suggesting that no specific microbial process can be inferred on the setal tufts. In the emptied midgut, 64 clones were attributed to 16 unique phylotypes with the majority (40.6%) belonging to the γ-Proteobacteria, specifically to the genus Vibrio, a marine group with known symbionts of decapods. The next most abundant group was the ɛ-Proteobacteria (28.1%), with members as likely symbionts related to the processes involving redox reactions occurring in the midgut. In addition, phylotypes related to the Spirochaetes (10.9%) were also present, with relatives capable of symbiosis conducting a nitrite associated metabolism. Entomoplasmatales, Bacteroidetes and Actinobacteria related phylotypes were also found. These results indicate a specific bacterial community dominated by putative symbiotic Bacteria within the P. tyrrhena’s midgut.

Keywords: Bacteria; Setal tuft; Midgut; 16S rRNA diversity; Thalassinidea; Decapoda; Pestarella tyrrhena

  • [1] Felbeck H., Distel L.D., Prokaryotic symbionts of marine invertebrates, In: Dworkin M. et al., (Eds.), The prokaryotes: An evolving electronic resource for the microbiological community, 3rd edition, 2004, release Springer-Verlag, New York Google Scholar

  • [2] Goffredi S.K., Warén A., Orphan J.V., Van Dover L.C., Vrijenhoek C.R., Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean, Appl. Environ. Microbiol., 2004 70, 3083–3090 http://dx.doi.org/10.1128/AEM.70.5.3082-3090.2004CrossrefGoogle Scholar

  • [3] Blazejak A., Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta), MSc Dissertation, Max-Planck-Institut für Marine Mikrobiologie, Bremen, Germany, 2005 Google Scholar

  • [4] Zbinden M., Cambon-Bonavita M.A., Occurrence of Deferribacterales and Entomoplasmatales in the deep-sea alvinocarid shrimp Rimicaris exoculata gut, FEMS Microbiol. Ecol., 2003, 46, 23–30 http://dx.doi.org/10.1016/S0168-6496(03)00176-4CrossrefGoogle Scholar

  • [5] Gregory G., Dimijian M.D., Evolving together: the biology of symbiosis, Part 1, Proc. Bayl. Univ. Med. Cent., 2000, 13, 381–390 Google Scholar

  • [6] Amann R.I., Ludwig W., Schleifer K.H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 1995, 59, 143–169 Google Scholar

  • [7] Harris M.J., Seiderer J.L., Lucas I.M., Gut microflora of two saltmarsh detritivore thalassinid prawns, Ubogebia africana and Callianassa kraussi, Microb. Ecol., 1991, 21, 277–296 http://dx.doi.org/10.1007/BF02539159CrossrefGoogle Scholar

  • [8] Harris M.J., The presence, nature, and role of gut microflora in aquatic invertebrates: A synthesis, Microb. Ecol., 1993, 25, 195–231 http://dx.doi.org/10.1007/BF00171889CrossrefGoogle Scholar

  • [9] Lau W.W.Y., Jumars P.A., Armbrust E.V., Genetic diversity of attached bacteria in the hindgut of the deposit-feeding shrimp Neotrypaea (formerly Callianassa) californiensis (Decapoda: Thalassinidae), Microb. Ecol., 2002, 43, 455–466 http://dx.doi.org/10.1007/s00248-001-1043-3CrossrefGoogle Scholar

  • [10] Gillan D.C., Dubilier N., Novel epibiotic Thiothrix bacterium on a marine amphipod, Appl. Environ. Microbiol., 2004, 70, 3772–3775 http://dx.doi.org/10.1128/AEM.70.6.3772-3775.2004CrossrefGoogle Scholar

  • [11] Payne M.S., Hall M.R., Sly L., Bourne D.G., Microbial diversity within early-stage cultured Panulirus ornatus phyllosomas, Appl. Environ. Microbiol., 2007, 73, 1940–1951 http://dx.doi.org/10.1128/AEM.02520-06CrossrefGoogle Scholar

  • [12] Dworschak P.C., The burrows of Callianassa tyrrhena (Petagna, 1792) (Decapoda: Thalassinidea), Mar. Ecol., 2001, 22, 155–166 http://dx.doi.org/10.1046/j.1439-0485.2001.00748.xCrossrefGoogle Scholar

  • [13] Dworschak P.C., Koller H., Abed-Navandii D., Burrow structure, burrowing and feeding behaviour of Corallianassa longiventris and Pestaralla tyrrhena (Crustacea, Thalassinidea, Callianassidae), Mar. Biol., 2005, 148, 1369–1382 http://dx.doi.org/10.1007/s00227-005-0161-8CrossrefGoogle Scholar

  • [14] Thessalou-Legaki M., Contribution of the study of ecology and biology of Callianassa tyrrhena (Petagna, 1972) (Crustacea, Decapoda, Thalassinidea), PhD thesis, University of Athens, Athens, Greece, 1987 Google Scholar

  • [15] Goffredi S.K., Jones W.J., Erhlich H., Apringer A., Vrijenhoek R.C., Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsute, Environ. Microbiol., 2008, 10, 2623–2634 http://dx.doi.org/10.1111/j.1462-2920.2008.01684.xCrossrefGoogle Scholar

  • [16] Papaspyrou S., Gregersen T., Cox R.P., Thessalou-Legaki M., Kristensen E., Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea), Aquat. Microb. Ecol., 2005, 38, 181–190 http://dx.doi.org/10.3354/ame038181CrossrefGoogle Scholar

  • [17] Maidak B.L., Cole J.R., Lilburn T.G., Parker C.T., Saxman P.R., Farris R.J., et al., The RDP-II (Ribosomal Database Project), Nucl. Acids Res., 2001, 29, 173–174 http://dx.doi.org/10.1093/nar/29.1.173CrossrefGoogle Scholar

  • [18] Good I.J., The population frequencies of species and the estimation of population parameters, Biometrika, 1953, 43, 45–63 Google Scholar

  • [19] Kemp P.F., Aller J.Y. Estimating prokaryotic diversity: When are 16S rDNA libraries large enough?, Limnol. Oceanogr. Methods, 2004, 2, 114–125 CrossrefGoogle Scholar

  • [20] Ohkuma M., Noda S., Hongoh Y., Kudo T., Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites, Biosci. Biotechnol. Biochem., 2002, 66, 78–84 http://dx.doi.org/10.1271/bbb.66.78CrossrefGoogle Scholar

  • [21] Schmitt-Wagner D., Friedrich M., Wagner B., Brune A., Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.), Appl. Environ. Microbiol., 2003, 69, 6007–6017 http://dx.doi.org/10.1128/AEM.69.10.6007-6017.2003CrossrefGoogle Scholar

  • [22] Sears M.A., Gerhart D.J., Rittschof D., Antifouling agents from marine sponge Lissodendoryx isodictyalis carter, J. Chem. Ecol., 1990, 16, 791–799 http://dx.doi.org/10.1007/BF01016489CrossrefGoogle Scholar

  • [23] Nedashkovskaya O.I., Kim S.B., Han S.K., Lysenko A.M., Rohde M., Rhee M.S., et al., Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov., Int. J. Syst. Evol. Microbiol., 2004, 54, 1017–1023 http://dx.doi.org/10.1099/ijs.0.02849-0CrossrefGoogle Scholar

  • [24] Brazelton W.J., Schrenk M.O., Kelley D.S., Baross J.A., Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem, Appl. Environ. Microbiol., 2006, 72, 6257–6270 http://dx.doi.org/10.1128/AEM.00574-06CrossrefGoogle Scholar

  • [25] Koblížek M., Béjà O., Bidigare R.R., Christensen S., Benitez-Nelson B., Vetriani C., et al., Isolation and characterization of Erythrobacter sp. strains from the upper ocean, Arch. Microbiol., 2003, 180, 327–338 http://dx.doi.org/10.1007/s00203-003-0596-6CrossrefGoogle Scholar

  • [26] Green D.H., Llewellyn L.E., Negri A.P., Blackburn S.I., Bolch C.J.S., Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum, FEMS Microbiol. Ecol., 2004, 47, 345–357 http://dx.doi.org/10.1016/S0168-6496(03)00298-8CrossrefGoogle Scholar

  • [27] Yurkov V.V., Beatty J.T., Aerobic anoxygenic phototrophic bacteria, Microbiol. Mol. Biol. Rev., 1998, 62, 695–724 Google Scholar

  • [28] Oxley A.P., Shipton W., Owens L., McKay D., Bacterial flora from the gut of the wild and cultured banana prawn, Penaeus merguiensis, J. Appl. Microbiol., 2002, 93, 214–223 http://dx.doi.org/10.1046/j.1365-2672.2002.01673.xCrossrefGoogle Scholar

  • [29] Thompson F.L., Iida T., Swings J., Biodiversity of vibrios, Microbiol. Mol. Biol. Rev., 2004, 68, 403–431 http://dx.doi.org/10.1128/MMBR.68.3.403-431.2004CrossrefGoogle Scholar

  • [30] Colwell R.R., Global microbial ecology of Vibrio cholerae, In: Belnkin S., Colwell R.R., (Eds.), Oceans and health: pathogens in the marine environment, Springer, New York, 2005 Google Scholar

  • [31] Pinn E.H., Rogerson A., Atkinson R.J.A., Microbial flora associated with the digestive system of Upogebia stellata (Crustacea: Decapoda: Thalassinidea), J. Mar. Biol. Ass. U.K., 1997, 77, 1083–1096 http://dx.doi.org/10.1017/S0025315400038649CrossrefGoogle Scholar

  • [32] Inagaki F., Takai K., Kobayashi H., Nealson K.H., Horikoshi K., Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ɛ-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough, Int. J. Syst. Evol. Microbiol., 2003, 53, 1801–1804 http://dx.doi.org/10.1099/ijs.0.02682-0CrossrefGoogle Scholar

  • [33] Alain K., Olagnon M., Desbruyères D., Pagé A., Barbier G., Juniper S.K., et al., Phylogenetic characterization of the bacteria assemblage associated with mucus secretions of the hydrothermal vent polychaete Paralvinella palmiforis, FEMS Microbiol. Ecol., 2002, 42, 463–476 http://dx.doi.org/10.1111/j.1574-6941.2002.tb01035.xCrossrefGoogle Scholar

  • [34] Suzuki Y., Kojima S., Sasaki T., Suzuki M., Utsumi T., Watanabe H., et al., Host-symbiont relationships in hydrothermal vent gastropods of the genus Alviniconcha from the Southwest Pacific, Appl. Environ. Microbiol., 2006, 72, 1388–1393 http://dx.doi.org/10.1128/AEM.72.2.1388-1393.2006CrossrefGoogle Scholar

  • [35] Madigan M.T., Martinko J.M., Parker J., Brock biology of microorganisms, 10th edition, 2003, Prentice Hall, Upper Saddle River Google Scholar

  • [36] Breznak J.A., Leadbetter J.R., Termite gut spirochaetes, Prokaryotes, 2006, 7, 318–329 http://dx.doi.org/10.1007/0-387-30747-8_11CrossrefGoogle Scholar

  • [37] Dubilier N., Amann R., Erseus C., Muyzer G., Park S.Y., Giere O., et al., Phylogenetic diversity of bacterial endosymbionts in the gutless marine oligochete Olavius loisae (Annelida), Mar. Ecol. Progr. Ser., 1999, 178, 271–280 http://dx.doi.org/10.3354/meps178271CrossrefGoogle Scholar

  • [38] Alain K., Olagnon M., Desbruyères D., Pagé A., Barbier G., Juniper S.K., et al., Phylogenetic characterization of the bacteria assemblage associated with mucus secretions of the hydrothermal vent polychaete Paralvinella palmiforis, FEMS Microbiol. Ecol., 2002, 42, 463–476 http://dx.doi.org/10.1111/j.1574-6941.2002.tb01035.xCrossrefGoogle Scholar

  • [39] Campbell B.J., Summer Engel A., Porter M.L., Takai K., The versatile ɛ-proteobacteria: key players in sulphidic habitats, Nat. Rev. Microbiol., 2006, 4, 458–468 http://dx.doi.org/10.1038/nrmicro1414CrossrefGoogle Scholar

  • [40] Pikuta E., Lysenko A., Chuvilskaya N., Mendrock U., Hippe H., Suzina N., et al., Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov., Int. J. Syst. Evol. Microbiol., 2000, 50, 2109–2117 CrossrefGoogle Scholar

  • [41] Jones R.T., McCormick K.F., Martin A.P., Bacterial communities of Bartonella-positive fleas: diversity and community assembly patterns, Appl. Environ. Microbiol., 2008, 74, 1667–1670 http://dx.doi.org/10.1128/AEM.02090-07CrossrefGoogle Scholar

  • [42] Meziti A., Kormas K.A., Pancucci-Papadopoulou M.A., Thessalou-Legaki M., Bacterial phylotypes associated with the intestinal tract of the sea urchin Paracentrotus lividus and the ascidian Microcosmus sp., Russ. J. Mar. Biol., 2007, 33, 84–91 http://dx.doi.org/10.1134/S1063074007020022CrossrefGoogle Scholar

About the article

Published Online: 2009-11-06

Published in Print: 2009-12-01


Citation Information: Open Life Sciences, Volume 4, Issue 4, Pages 558–566, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0053-x.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sangita Ganesh, Darren J Parris, Edward F DeLong, and Frank J Stewart
The ISME Journal, 2014, Volume 8, Number 1, Page 187
[2]
Sébastien Duperron, Marie-Anne Pottier, Nelly Léger, Sylvie M. Gaudron, Nicolas Puillandre, Stéphanie Le Prieur, Julia D. Sigwart, Juliette Ravaux, and Magali Zbinden
FEMS Microbiology Ecology, 2013, Volume 83, Number 3, Page 552
[3]
Alexandra Meziti, Eleni Mente, and Konstantinos Ar. Kormas
Systematic and Applied Microbiology, 2012, Volume 35, Number 7, Page 473
[4]
Laure Corbari, Lucile Durand, Marie-Anne Cambon-Bonavita, Françoise Gaill, and Philippe Compère
Comptes Rendus Biologies, 2012, Volume 335, Number 2, Page 142
[5]
Charles R. Budinoff, John R. Dunlap, Mary Hadden, and Alison Buchan
The Journal of General and Applied Microbiology, 2011, Volume 57, Number 5, Page 259

Comments (0)

Please log in or register to comment.
Log in