Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1


Volume 10 (2015)

Replication of association between polymorphisms of the pancreatic ATP-sensitive potassium channel and susceptibility to type 2 diabetes in two Russian urban populations

Dimitry Chistiakov / Viktor Potapov / Dmitry Khodirev / Minara Shamkhalova
  • Department of Diabetic Nephropathy and Hemodialysis, Institute of Diabetes, Endocrinology Research Center, 117036, Moscow, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marina Shestakova
  • Department of Diabetic Nephropathy and Hemodialysis, Institute of Diabetes, Endocrinology Research Center, 117036, Moscow, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Valery Nosikov
Published Online: 2010-01-30 | DOI: https://doi.org/10.2478/s11535-009-0059-4


The KCNJ11 and ABCC8 genes encode components of the pancreatic ATP-sensitive potassium (KATP) channel. Previously, we reported association of the KCNJ11 E23K and ABCC8 R1273R G/A variants with type 2 diabetes (T2D) in a small Russian population sample (n=244). Here we replicated association between these genetic variants and T2D in a larger cohort (588 diabetic and 597 non-diabetic subjects). Using the ANCOVA analysis, Odds Ratios (ORs) and relationships between the carriage of a genotype and biochemical parameters of the patients were assessed and then adjusted for confounders (age, gender, HbA1c, hypertension, and obesity). The KCNJ11 K23 variant and the ABCC8 R1273R allele A showed association with higher risk of T2D (adjusted OR of 1.41 and 2.03, P<0.0001, respectively). Diabetic patients homozygous for K/K had lower 2h insulin (Padjusted=0.044). The ABCC8 A/A variant was associated with increased 2h serum insulin in diabetic and non-diabetic subjects (Padjusted=0.027 and 0.033, respectively). The carriage of the risk variant K/K of KCNJ11 E23K or A/A of ABCC8 G/A R1273R was associated with reduced response to nonsulfonylurea and sulfonylurea blockers of the pancreatic KATP channel. Adjusted attributable population risk was 3.0% (KCNJ11 E23K) and 4.8% (ABCC8 G/A) suggesting for the modest effects of these genetic variants on diabetes susceptibility.

Keywords: ABCC8; KCNJ11; Insulin; Secretion; Susceptibility; Type 2 diabetes

  • [1] Smith A.J., Taneja T.K., Mankouri J., Sivaprasadao A., Molecular cell biology of KATP channels: implications for neonatal diabetes, Expert Rev. Mol. Med., 2007, 9, 1–17 http://dx.doi.org/10.1017/S1462399407000403CrossrefGoogle Scholar

  • [2] Inagaki N., Gonoi T., Clement J.P. IV, Namba N., Inazawa J., Gonzales G., et al., Reconstitution of I(KATP): an inward rectifier subunit plus the sulfonylurea receptor, Science, 1995, 270, 1166–1169 http://dx.doi.org/10.1126/science.270.5239.1166CrossrefGoogle Scholar

  • [3] Tucker S.J., Gribble F.M., Zhao C., Trapp S., Ashcroft F.M., Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulfonylureas receptor, Nature, 1997, 387, 179–183 http://dx.doi.org/10.1038/387179a0CrossrefGoogle Scholar

  • [4] Seino S., Miki T., Physiological and pathophysiological roles of ATP-sensitive K+ channels, Prog. Biophys. Mol. Biol., 2003, 8, 133–176 http://dx.doi.org/10.1016/S0079-6107(02)00053-6CrossrefGoogle Scholar

  • [5] Nielsen E.M., Hansen L., Carstensen B., Echwald S.M., Drivsholm T., Glümer C., et al., The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes, Diabetes, 2003, 52, 573–577 http://dx.doi.org/10.2337/diabetes.52.2.573CrossrefGoogle Scholar

  • [6] Riedel M.J., Steckley D.C., Light P.E., Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes, Hum. Mutat., 2005, 116, 133–145 Google Scholar

  • [7] Nichols C.G., Koster J.C., Remedi M.S., β-cell hyperexcitability: from hyperinsulinism to diabetes, Diabetes Obes. Metab., 2007, 9, 81–88 http://dx.doi.org/10.1111/j.1463-1326.2007.00778.xCrossrefGoogle Scholar

  • [8] Schwanstecher C., Meyer U., Schwanstecher M., KIR6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic β-cell ATP-sensitive K channels, Diabetes, 2002, 51, 875–879 http://dx.doi.org/10.2337/diabetes.51.3.875CrossrefGoogle Scholar

  • [9] Elbein S.C., Sun J., Scroggin E., Teng K., Hasstedt S.J., Role of common sequence variants in insulin secretion in familial type 2 diabetic kindreds: the sulfonylurea receptor, glucokinase, and hepatocyte nuclear factor 1 alpha genes, Diabetes Care, 2001, 24, 472–478 http://dx.doi.org/10.2337/diacare.24.3.472CrossrefGoogle Scholar

  • [10] Hart L.M., Dekker J.M., van Haeften T.W., Ruige J.B., Stehouwer C.D., Erkelens D.W., et al., Reduced second phase insulin secretion in carriers of a sulphonylurea receptor gene variant associating with Type II diabetes mellitus, Diabetologia, 2001, 43, 515–519 http://dx.doi.org/10.1007/s001250051337CrossrefGoogle Scholar

  • [11] Rissanen J., Markkanen A., Karkkainen P., Pihlajamaki J., Kekalainen P., Mykkanen L., et al., Sulfonylurea receptor 1 gene variants are associated with gestational diabetes and type 2 diabetes but not with altered secretion of insulin, Diabetes Care, 2000, 23, 70–73 http://dx.doi.org/10.2337/diacare.23.1.70Google Scholar

  • [12] van Dam R.M., Hoebee B., Seidell J.C., Schaap M.M., de Bruin T.W.A., Feskens E.J.M., Common variants in the ATP-sensitive K+ channel genes KCNJ11 (Kir6.2) and ABCC8 (SUR1) in relation to glucose intolerance: population-based studies and meta-analyses, Diabet. Med., 2005, 22, 590–598 http://dx.doi.org/10.1111/j.1464-5491.2005.01465.xCrossrefGoogle Scholar

  • [13] Barroso I., Luan J., Middelberg R.P.S., Harding A.H., Franks P.W., Jakes R.W., et al., Candidate gene association study in type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action, PLoS Biol., 2003, 1, 41–55 http://dx.doi.org/10.1371/journal.pbio.0000020CrossrefGoogle Scholar

  • [14] Laukkanen O., Pihlajamaki J., Lindstrom J., Eriksson J., Valle T.T., Hamalainen H., et al., Polymorphisms of the SUR1 (ABCC8) and Kir6.2 (KCNJ11) genes predict the conversion from impaired glucose tolerance to type 2 diabetes. The Finnish Diabetes Prevention Study, J. Clin. Endocrinol. Metab., 2004, 89, 6286–6290 http://dx.doi.org/10.1210/jc.2004-1204Google Scholar

  • [15] Reis A.F., Ye W.Z., Dubois-Laforgue D., Bellanne-Chantelot C., Timsit J., Velho G., Association of a variant in exon 31 of the sulfonylurea receptor 1(SUR1) gene with type 2 diabetes mellitus in French Caucasians, Hum. Genet., 2000, 107, 138–144 http://dx.doi.org/10.1007/s004390000345Google Scholar

  • [16] Goksel D.L., Fischbach K., Duggirala R., Mitchell B.D., Aguilar-Bryan L., Blangero J., et al., Variant in sulfonylurea re ceptor-1 gene is associated with high insulin concentrations in non-diabetic Mexican Americans: SUR1 gene variant and hyperinsulinemia, Hum. Genet., 1998, 103, 280–285 http://dx.doi.org/10.1007/s004390050817CrossrefGoogle Scholar

  • [17] Kilpelainen T.O., Lakka T.A., Laaksonen D.E., Laukkanen O., Lindstrom J., Eriksson J.G., et al., Physical activity modifies the effect of SNPs in the SLC2A2 (GLUT2) and ABCC8 (SUR1) genes on the risk of developing type 2 diabetes, Physiol. Genomics, 2007, 31, 264–272 http://dx.doi.org/10.1152/physiolgenomics.00036.2007CrossrefGoogle Scholar

  • [18] Florez J.C., Newly identified loci highlight β cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes?, Diabetologia, 2008, 51, 1100–1110 http://dx.doi.org/10.1007/s00125-008-1025-9CrossrefGoogle Scholar

  • [19] Chistiakov D.A., Potapov V.A., Khodirev D.S., Shamkhalova M.S., Shestakova M.V., Nosikov V.V., Genetic variations in the pancreatic ATP-sensitive potassium channel, β-cell dysfunction, and susceptibility to type 2 diabetes, Acta Diabetol., 2009, 46, 43–49 http://dx.doi.org/10.1007/s00592-008-0056-5CrossrefGoogle Scholar

  • [20] Alberti K.G., Zimmet P.Z., WHO Consultation, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation, Diabet. Med., 1998, 15, 539–553 http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-SCrossrefGoogle Scholar

  • [21] Balkau B., Charles M.A., Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR), Diabet. Med., 1999, 16, 442–443 http://dx.doi.org/10.1046/j.1464-5491.1999.00059.xCrossrefGoogle Scholar

  • [22] Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C., Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man, Diabetologia, 1985, 28, 412–419 http://dx.doi.org/10.1007/BF00280883CrossrefGoogle Scholar

  • [23] Bassam B.J., Caetano-Anolles G., Gresshoff P.M., Fast and sensitive silver staining of DNA in polyacrylamide gels, Anal. Biochem., 1991, 196, 80–83 http://dx.doi.org/10.1016/0003-2697(91)90120-ICrossrefGoogle Scholar

  • [24] Rockhill B., Newman B., Weiberg C., Use and misuse of population attributable fractions, Am. J. Publ. Health, 1998, 88, 15–19 http://dx.doi.org/10.2105/AJPH.88.1.15CrossrefGoogle Scholar

  • [25] Purcell S., Cherny S.S., Sham P.C., Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits, Bioinformatics, 2003, 19, 149–150 http://dx.doi.org/10.1093/bioinformatics/19.1.149CrossrefGoogle Scholar

  • [26] Abdul-Ghani M.A., Tripathy D., DeFronzo R.A., Contributions of beta-cell sysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fating glucose, Diabetes Care, 2006, 29, 1130–1139 http://dx.doi.org/10.2337/dc05-2179CrossrefGoogle Scholar

  • [27] Mannhold R., KATP channel openers: structureactivity relationships and therapeutic potential, Med. Res. Rev., 2004, 24, 213–266 http://dx.doi.org/10.1002/med.10060CrossrefGoogle Scholar

  • [28] Cejková P., Novota P., Cerná M., Kolostová K., Nováková D., Kucera P., et al., KCNJ11 E23K polymorphism and diabetes mellitus with adult onset in Czech patients, Folia Biol. (Praha), 2007, 53,173–175 Google Scholar

  • [29] Mercado A.B., Castells S., Pancreatic beta-cell hyperactivity in morbidly obese adolescents, Pediatr. Endocrinol. Rev., 2006, 3, 560–563 Google Scholar

  • [30] Zavaroni I., Bonini L., Gasparini P., Barilli A.L., Zuccarelli A., Dall’Aglio E., et al., Hyperinsulinemia in a normal population as a predictor of noninsulindependent diabetes mellitus, hypertension, and coronary heart disease: the Barilla factory revisited, Metabolism, 1999, 48, 989–994 http://dx.doi.org/10.1016/S0026-0495(99)90195-6CrossrefGoogle Scholar

  • [31] Lillioja S., Mott D.M., Howard B.V., Bennett P.H., Yki-Yärvinen H., Freymond D., et al., Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians, N. Engl. J. Med., 1988, 318, 1217–1225 http://dx.doi.org/10.1056/NEJM198805123181901CrossrefGoogle Scholar

  • [32] Tripathy D., Carlsson M., Almgren P., Isomaa B., Taskinen M.R., Tuomi T., et al., Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the Botnia Study, Diabetes, 2000, 49, 975–980 http://dx.doi.org/10.2337/diabetes.49.6.975CrossrefGoogle Scholar

  • [33] Florez J.C., Yablonski K.A., Kahn S.E., Franks P.W., Dabelea D., Hamman R.F., et al., Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program, Diabetes, 2007, 56, 531–536 http://dx.doi.org/10.2337/db06-0966CrossrefGoogle Scholar

  • [34] Holstein A., Hahn M., Stumvoll M., Kovacz P., The E23K variant of KCNJ11 and the risk for severe sulfonylurea-induced hypoglycemia in patients with type 2 diabetes, Horm. Metab. Res., 2009, 41, 387–390 http://dx.doi.org/10.1055/s-0029-1192019CrossrefGoogle Scholar

  • [35] Sesti G., Laratta E., Cardellini M., Andreozzi F., Del Guerra S., Irace C., et al., The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5′-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes, J. Clin. Endocrinol. Metab., 2006, 91, 2334–2339 http://dx.doi.org/10.1210/jc.2005-2323CrossrefGoogle Scholar

  • [36] Hansen A.M., Hansen J.B., Carr R.D., Ashcroft F.M., Wahl P., Kir6.2-dependent high-affinity repaglinide binding to beta-cell K(ATP) channels, Br. J. Pharmacol., 2005, 144, 551–557 http://dx.doi.org/10.1038/sj.bjp.0706082CrossrefGoogle Scholar

  • [37] Florez J.C., Burtt N., de Bakker P.I.W., Almgren P., Tuomi T., Holmkvist J., et al., Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region, Diabetes, 2004, 53, 1360–1368 http://dx.doi.org/10.2337/diabetes.53.5.1360CrossrefGoogle Scholar

  • [38] Bryan J., Munoz A., Zhang X., Dufer M., Drews G., Kruppeit-Drews P., et al., ABCC8 and ABCC9: ABC transporters that regulate K+ channels, Eur. J. Physiol., 2007, 453, 703–718 http://dx.doi.org/10.1007/s00424-006-0116-zCrossrefGoogle Scholar

  • [39] Zhang H., Liu X., Kuang H., Yi R., Xing H., Association of sulfonylurea receptor 1 genotype with therapeutic response to gliclazide in type 2 diabetes, Diabetes Res. Clin. Pract., 2007, 77, 58–61 http://dx.doi.org/10.1016/j.diabres.2006.10.021CrossrefGoogle Scholar

  • [40] Feng Y., Mao G., Ren X., Xing H., Li Q., Sun X., et al., Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients, Diabetes Care, 2008, 31, 1939–1944 http://dx.doi.org/10.2337/dc07-2248CrossrefGoogle Scholar

  • [41] Hamming K.S., Soliman D., Matemisz L.C., Niazi O., Lang Y., Gloyn A.L., et al., Co-expression of the type 2 fiabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the adenosine-5′-triphosphate and sulfonylurea sensitivities of the ATP-sensitive potassium channel, Diabetes, 2009, 58, 2419–2424 http://dx.doi.org/10.2337/db09-0143CrossrefGoogle Scholar

  • [42] van Dam R.M., Hoebee B., Seidell J.C., Schaap M.M., de Bruin T.W.A., Feskens E.J.M., Common variants in the ATP-sensitive K+ channel genes KCNJ11 (Kir6.2) and ABCC8 (SUR1) in relation to glucose intolerance: population-based studies and meta-analyses, Diabet. Med., 2005, 22, 590–598 http://dx.doi.org/10.1111/j.1464-5491.2005.01465.xCrossrefGoogle Scholar

About the article

Published Online: 2010-01-30

Published in Print: 2010-02-01

Citation Information: Open Life Sciences, Volume 5, Issue 1, Pages 67–77, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0059-4.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zh. T. Isakova, E. T. Talaibekova, D. A. Asambaeva, A. S. Kerimkulova, O. S. Lunegova, N. M. Aldasheva, and A. A. Aldashev
Terapevticheskii arkhiv, 2017, Volume 89, Number 10, Page 40
Zh. T. Isakova, E. T. Talaibekova, D. A. Asambaeva, A. S. Kerimkulova, O. S. Lunegova, and A. A. Aldashev
Terapevticheskii arkhiv, 2017, Volume 89, Number 1, Page 14
Dimitry A. Chistiakov, V. A. Potapov, S. A. Smetanina, L. N. Bel’chikova, L. A. Suplotova, and V. V. Nosikov
Acta Diabetologica, 2011, Volume 48, Number 3, Page 227

Comments (0)

Please log in or register to comment.
Log in