Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 5, Issue 1

Issues

Volume 10 (2015)

Seasonal variations of metal concentrations in periphyton and taxonomic composition of the algal community at a Yenisei River littoral site

Olesya Anishchenko
  • Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
  • Siberian Federal University, 660041, Krasnoyarsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michail Gladyshev
  • Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
  • Siberian Federal University, 660041, Krasnoyarsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena Kravchuk
  • Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
  • Siberian Federal University, 660041, Krasnoyarsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena Ivanova / Iliada Gribovskaya / Nadezhda Sushchik
  • Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 660036, Krasnoyarsk, Russia
  • Siberian Federal University, 660041, Krasnoyarsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-01-30 | DOI: https://doi.org/10.2478/s11535-009-0060-y

Abstract

The concentrations of metals K, Na, Ca, Mg, Fe, Mn, Zn, Cu, Ni, Pb, Co and Cr, in the water and periphyton (epilithic algal communities) were studied at a site in the middle stream of the Yenisei River (Siberia, Russia) during three years using monthly sampling frequencies. Despite considerable seasonal variations in aquatic concentrations of some metals, there was no correlation between metal contents in the water and in periphyton. Seasonal concentration variations of some metals in periphyton were related to the species (taxonomic) composition of periphytic microalgae and cyanobacteria. Enhanced levels of Ni and Co in periphyton in late autumn, winter, and early spring were likely caused by the predominance of cyanobacteria in the periphytic community, and annual maximum levels of K in periphyton in late spring and early summer were attributed to the domination of Chlorophyta, primarily Ulothrix zonata.

Keywords: Heavy metals; Periphyton; Seasonal dynamics

  • [1] Nikanorov A.M., Zhulidov A.V., Biomonitoring of metals in freshwater ecosystems, Gidrometeoizdat, Leningrad, 1991, (in Russian) Google Scholar

  • [2] Ion J., de Lafontaine Y., Dumont P., Lapierre L., Contaminant levels in St. Lawrence River yellow perch (Perca flavescens): spatial variation and implications for monitoring, Can. J. Fish. Aquat. Sci., 1997, 54, 2930–2946 http://dx.doi.org/10.1139/cjfas-54-12-2930CrossrefGoogle Scholar

  • [3] Behra R., Landwehrjohann R., Vogel K., Wagne B., Sigg L., Copper and zinc content of periphyton from two rivers as a function of dissolved metal concentration, Aquat. Sci., 2002, 64, 300–306 http://dx.doi.org/10.1007/s00027-002-8074-9CrossrefGoogle Scholar

  • [4] Farag A.M., Nimick D.A., Kimball B.A., Church S.E., Harper D.D., Brumbaugh W.G., Concentrations of metals in water, sediment, biofilm, benthic macroinvertebrates, and fish in the Boulder River watershed, Montana, and the role of colloids in metal uptake, Arch. Environ. Contam. Toxicol., 2007, 52, 397–409 http://dx.doi.org/10.1007/s00244-005-0021-zCrossrefGoogle Scholar

  • [5] Morin S., Duong T.T., Dabrin A., Coynel A., Herlory O., Baudrimont M., et al., Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France, Environ. Pollut., 2008, 151, 532–542 http://dx.doi.org/10.1016/j.envpol.2007.04.023CrossrefGoogle Scholar

  • [6] Blanck H., Admiraal W., Cleven R.F.M.J., Guasch H., van den Hoop M.A.G.T., Ivorra N., et al., Variability in zinc tolerance, measured as incorporation of radio-labeled carbon dioxide and thymidine, in periphyton communities sampled from 15 European river stretches, Arch. Environ. Contam. Toxicol., 2003, 44, 17–29 http://dx.doi.org/10.1007/s00244-002-1258-4CrossrefGoogle Scholar

  • [7] Gold C., Feurtet-Mazel A., Coste M., Boudou A., Field transfer of periphytic diatom communities to assess short-term structural effects of metals (Cd, Zn) in rivers, Wat. Res., 2002, 36, 3654–3664 http://dx.doi.org/10.1016/S0043-1354(02)00051-9CrossrefGoogle Scholar

  • [8] Telang S.A., Pocklington R., Naidu A.S., Romankevich E.A., Gitelson I.I., Gladyshev M.I., Carbon and mineral transport in major North American, Russian Arctic, and Siberian Rivers: the St Lawrence, the Mackenze, the Yukon, the Arctic Alaskan Rivers, the Arctic Basin rivers in the Soviet Union, and the Yenisei, In: Degens E.T., Kempe S., Richey J.E., (Eds.), Biogeochemistry of major world rivers, Wiley & Sons, Chichester e.a., 1991, 75–104 Google Scholar

  • [9] Zotina T.A., The biomass of macrophytes at several sites of the upper reaches of the Yenisei River, J. Siberian Federal University, Biol., 2008, 1, 102–108 Google Scholar

  • [10] Sushchik N.N., Gladyshev M.I., Kravchuk E.S., Ivanova E.A., Ageev A.V., Kalachova G.S., Seasonal dynamics of long-chain polyunsaturated fatty acids in littoral benthos in the upper Yenisei River, 2007, Aquat. Ecol., 41, 349–365 CrossrefGoogle Scholar

  • [11] Kolmakov V.I., Anishchenko O.V., Ivanova E.A., Gladyshev M.I., Sushchik N.N., Estimation of periphytic microalgae gross primary production with DCMU-fluorescence method in Yenisei River (Siberia, Russia), J. Appl. Phycol., 2008, 20, 289–297 http://dx.doi.org/10.1007/s10811-007-9246-8CrossrefGoogle Scholar

  • [12] Muranov A.P., (Ed.), Surface-water resources of USSR, V. 19, I. 1, Gidrometeoizdat, Leningrad, 1973, (in Russian). Google Scholar

  • [13] Krammer K., Lange-Bertalot H., Bacillariophyceae: Naviculaceae, VEB Gustav Fischer Verlag, Jena, 1986 Google Scholar

  • [14] Krammer K., Lange-Bertalot H., Bacillariophyceae: Bacillariaceae, Epithemiaceae, Surirellaceae, VEB Gustav Fischer Verlag, Jena, 1988 Google Scholar

  • [15] Krammer K., Lange-Bertalot H., Bacillariophyceae: Centrales, Fragilariaceae, Eunotiaceae, Gustav Fischer Verlag, Stuttgart, Jena, 1991 Google Scholar

  • [16] Krammer K., Lange-Bertalot H., Bacillariophyceae: Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis, Gustav Fischer Verlag, Stuttgart, Jena, 1991 Google Scholar

  • [17] Gollerbakh M.M., Kosinskaya E.K., Polyansky V.I., Keys for identification of freshwater algae of USSR, Vol. 2, Blue-green algae, Sovetskaya Nauka, Moscow, 1953, (in Russian) Google Scholar

  • [18] Dedusenko-Shchegoleva N.T., Matvienko A.M., Shkorbatov L.A., Keys for identification of freshwater algae of USSR, Vol. 8 Green algae, AN SSSR, Moscow-Leningrad, 1959, (in Russian) Google Scholar

  • [19] Hillebrand H., Durselen C.D., Kirschtel D., Pollingher U., Zohary T., Biovolume calculation for pelagic and benthic microalgae, J. Phycol., 1999, 35, 403–424 http://dx.doi.org/10.1046/j.1529-8817.1999.3520403.xCrossrefGoogle Scholar

  • [20] Clesceri L.S., Greenberg A.E., Trussel R.R., (Eds.), Standard methods for the examination of water and wastewater, American Public Health Association, Washington, 1989 Google Scholar

  • [21] Jeffers J., An introduction to system analysis: with ecological application, Mir, Moscow, 1981, (in Russian) Google Scholar

  • [22] Bervoets L., Blust R., Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: relationship with fish condition factor, Environ. Pollut., 2003, 126, 9–19 http://dx.doi.org/10.1016/S0269-7491(03)00173-8CrossrefGoogle Scholar

  • [23] Cheung K.C., Poon B.H.T., Lan C.Y., Wong M.H., Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China, Chemosphere, 2003, 52, 1431–1440 http://dx.doi.org/10.1016/S0045-6535(03)00479-XCrossrefGoogle Scholar

  • [24] Smolders A.J.P., Lock R.A.C., Van der Velde G., Medina Hoyos R.I., Roelofs J.G.M., Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America, Arch. Environ. Contam. Toxicol., 2003, 44, 314–323 http://dx.doi.org/10.1007/s00244-002-2042-1CrossrefGoogle Scholar

  • [25] Guasch H., Paulsson M., Sabater S., Effect of copper on algal communities from oligotrophic calcareous streams, J. Phycol., 2002, 38, 241–248 http://dx.doi.org/10.1046/j.1529-8817.2002.01114.xCrossrefGoogle Scholar

  • [26] Montes-Botella C., Tenorio M.D., Water characterization and seasonal heavy metal distribution in the Odiel River (Huelva, Spain) by means of principal component analysis, Arch. Environ. Contam. Toxicol., 2003, 45, 436–444 http://dx.doi.org/10.1007/s00244-003-0139-9CrossrefGoogle Scholar

  • [27] Clinton B.D., Vose J.M., Variation in stream water quality in an urban headwater stream in the Southern Appalachians, Wat. Air. Soil. Pollut., 2006, 169, 331–353 http://dx.doi.org/10.1007/s11270-006-2812-xCrossrefGoogle Scholar

  • [28] Gladyshev M.I., Gribovskaya I.V., Moskvicheva A.V., Muchkina E.Y., Chuprov S.M., Ivanova E.A., Content of metals in compartments of ecosystem of a Siberian pond, Arch. Environ. Contam. Toxicol., 2001, 41, 157–162 http://dx.doi.org/10.1007/s002440010233CrossrefGoogle Scholar

  • [29] Lawlor A.J., Tipping E., Metals in bulk deposition and surface waters at two upland locations in northern England, Environ. Pollut., 2003, 121, 153–167 http://dx.doi.org/10.1016/S0269-7491(02)00228-2CrossrefGoogle Scholar

  • [30] Fellows C.S., Clapcott J.E., Udy J.W., Bunn S.E., Harch B.D., Smith M.J., et al., Benthic metabolism as an indicator of stream ecosystem health, Hydrobiologia, 2006, 572, 71–87 http://dx.doi.org/10.1007/s10750-005-9001-6CrossrefGoogle Scholar

  • [31] Rai L.C., Gaur J.P., Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms, Springer-Verlag Berlin Heidelberg, 2001 Google Scholar

  • [32] Dutta D., De D., Chaudhuri S., Bhattacharya S.K., Hydrogen production by Cyanobacteria, Microb. Cell Factories, 2005, 4: 36, DOI: 10.1186/1475-2859-4-36 http://dx.doi.org/10.1186/1475-2859-4-36CrossrefGoogle Scholar

  • [33] Cavet J.S., Borrelly G.P.M., Robinson N.J., Zn, Cu and Co in cyanobacteria: selective control of metal availability, FEMS Microbiol. Rev., 2003, 27, 165–181 http://dx.doi.org/10.1016/S0168-6445(03)00050-0CrossrefGoogle Scholar

  • [34] Warren M., Raux E., Schubert H.I., Escalante-Semerena J.C., The biosynthesis of adenosylcobalamin (vitamin B12), Nat. Prod. Rep., 2002, 19, 390–412 http://dx.doi.org/10.1039/b108967fCrossrefGoogle Scholar

  • [35] Rebeille F., Ravanel S., Marquet A., Mendel R.R., Smith A.G., Warren M.J., Roles of vitamins B5, B8, B9, B12 and molybdenum cofactor at cellular and organismal levels, Nat. Prod. Rep., 2007, 24, 949–962 http://dx.doi.org/10.1039/b703104cCrossrefGoogle Scholar

  • [36] Subbarao G.V., Ito O., Berry W.L., Wheeler R.M., Sodium — a functional plant nutrient, Crit. Rev. Plant Sci., 2003, 22, 391–416 Google Scholar

  • [37] Lee R.E., Phycology, 3rd ed., Cambridge University Press, 1999 Google Scholar

  • [38] Patron N.J., Keeling P.J., Common evolutionary of starch biosynthetic enzymes in green and red algae, J. Phycol., 2005, 41, 1131–1141 http://dx.doi.org/10.1111/j.1529-8817.2005.00135.xCrossrefGoogle Scholar

  • [39] Rajan S.S., Plant morphology, Anmol publication, New Delhi, 2002 Google Scholar

  • [40] Zhao D., Oosterhuis D.M., Bednardz C.W., Influence of potassium deficiency on photosynthesis chlorophyll content, and chloroplast ultrastructure of cotton plants, Photosynthetica, 2001, 39, 103–109 http://dx.doi.org/10.1023/A:1012404204910CrossrefGoogle Scholar

  • [41] Jia Y., Yang X., Islam E., Feng Y., Effects of potassium deficiency on chloroplast ultrastructure and chlorophyll fluorescence in inefficient and efficient genotypes of rice, J. Plant. Nutr., 2008, 31, 2105–2118 http://dx.doi.org/10.1080/01904160802459625CrossrefGoogle Scholar

About the article

Published Online: 2010-01-30

Published in Print: 2010-02-01


Citation Information: Open Life Sciences, Volume 5, Issue 1, Pages 125–134, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0060-y.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. P. Tolomeev, O. V. Anishchenko, E. S. Kravchuk, O. V. Kolmakova, L. A. Glushchenko, O. N. Makhutova, A. A. Kolmakova, V. I. Kolmakov, M. Yu. Trusova, N. N. Sushchik, and M. I. Gladyshev
Contemporary Problems of Ecology, 2014, Volume 7, Number 4, Page 489
[2]
Anzhelika A. Kolmakova, Michail I. Gladyshev, Galina S. Kalachova, Elena S. Kravchuk, Elena A. Ivanova, and Nadezhda N. Sushchik
Freshwater Biology, 2013, Volume 58, Number 10, Page 2180
[3]
M. I. Gladyshev, O. V. Anishchenko, N. N. Sushchnik, G. S. Kalacheva, I. V. Gribovskaya, and A. V. Ageev
Contemporary Problems of Ecology, 2012, Volume 5, Number 4, Page 376

Comments (0)

Please log in or register to comment.
Log in