Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1


Volume 10 (2015)

Spatio-temporal visual properties in the ascending tectofugal system

Alice Rokszin / Zita Márkus / Gábor Braunitzer / Antal Berényi / Marek Wypych / Wioletta Waleszczyk / György Benedek / Attila Nagy
Published Online: 2010-01-30 | DOI: https://doi.org/10.2478/s11535-009-0065-6


Our study compares the spatio-temporal visual receptive field properties of different subcortical stages of the ascending tectofugal visual system. Extracellular single-cell recordings were performed in the superficial (SCs) and intermediate (SCi) layers of the superior colliculus (SC), the suprageniculate nucleus (Sg) of the posterior thalamus and the caudate nucleus (CN) of halothane-anesthetized cats. Neuronal responses to drifting gratings of various spatial and temporal frequencies were recorded. The neurons of each structure responded optimally to low spatial and high temporal frequencies and displayed narrow spatial and temporal frequency tuning. The detailed statistical analysis revealed that according to its stimulus preferences the SCs has markedly different spatio-temporal properties from the homogeneous group formed by the SCi, Sg and CN. The SCs neurons preferred higher spatial and lower temporal frequencies and had broader spatial tuning than the other structures. In contrast to the SCs the visually active SCi, as well as the Sg and the CN neurons possessed consequently similar spatio-temporal preferences. These data support our hypothesis that the visually active SCi, Sg and CN neurons form a homogeneous neuronal population given a similar spatio-temporal frequency preference and a common function in processing of dynamic visual information.

Keywords: Spatial frequency; Temporal frequency; Sinewave gratings; Superior colliculus; Suprageniculate nucleus; Caudate nucleus

  • [1] Schneider G.E., Two visual systems, Science, 1969, 163, 895–902 http://dx.doi.org/10.1126/science.163.3870.895CrossrefGoogle Scholar

  • [2] Sherman S.M., Guillery R.W., On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”, Proc. Natl. Acad. Sci. USA, 1998, 95, 7121–7126 http://dx.doi.org/10.1073/pnas.95.12.7121CrossrefGoogle Scholar

  • [3] Sherman S.M., Guillery R.W., The role of the thalamus in the flow of information to the cortex, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2002, 357, 1695–1708 http://dx.doi.org/10.1098/rstb.2002.1161CrossrefGoogle Scholar

  • [4] Eördegh G., Nagy A., Berényi A., Benedek G., Processing of spatial visual information along the pathway between the suprageniculate nucleus and the anterior ectosylvian cortex, Brain. Res. Bull., 2005, 67, 281–289 http://dx.doi.org/10.1016/j.brainresbull.2005.06.036CrossrefGoogle Scholar

  • [5] Rosenquist A.C., Connenctions of Visual Cortical Areas in the Cat, In: Peters A., Jones E.G., (Eds.), Cerebral Cortex Volume 3 Visual Cortex, New York Plenum Press, New York, 1985 Google Scholar

  • [6] Guirado S., Real M.A., Davila J.C., The ascending tectofugal visual system in amniotes: new insights, Brain Res. Bull., 2005, 66, 290–296 http://dx.doi.org/10.1016/j.brainresbull.2005.02.015CrossrefGoogle Scholar

  • [7] Wurtz R.H., Albano J.E., Visual-motor function of the primate superior colliculus, Annu. Rev. Neurosci., 1980, 3, 189–226, Neuroscience, 10, 2945–2956 http://dx.doi.org/10.1146/annurev.ne.03.030180.001201CrossrefGoogle Scholar

  • [8] Schiller P.H., Malpeli J.G., Properties and tectal projections of monkey retinal ganglion cells, J. Neurophysiol., 1977, 40, 428–445 Google Scholar

  • [9] Rodieck R.W., Watanabe M., Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvocellular laminae of the lateral geniculate nucleus, J. Comp. Neurol., 1993, 338, 289–303 http://dx.doi.org/10.1002/cne.903380211CrossrefGoogle Scholar

  • [10] Wilson M.E., Toyne M.J., Retino-tectal and cortico-tectal projections in Macaca mulatta, Brain Res., 1970, 24, 395–406 http://dx.doi.org/10.1016/0006-8993(70)90181-2CrossrefGoogle Scholar

  • [11] Gaharm J., Some topographical connections of the striate cortex with subcortical structures in Macaca fascicularis, Exp. Brain Res., 1982, 47, 1–14 Google Scholar

  • [12] Abramson B.P., Chalupa L.M., Multiple pathways from the superior colliculus to the extrageniculate visual thalamus of the cat, J. Comp. Neurol., 1988, 271, 397–418 http://dx.doi.org/10.1002/cne.902710308CrossrefGoogle Scholar

  • [13] Harting J.K., Updyke B.V., Van Lieshout D.P., Corticotectal projections in the cat: anterograde transport studies of twenty-five cortical areas, J. Comp. Neurol., 1992, 324, 379–414 http://dx.doi.org/10.1002/cne.903240308CrossrefGoogle Scholar

  • [14] May P.J., The mammalian SC: laminar structure and connections, Prog. Brain Res., 2005, 151, 321–378 http://dx.doi.org/10.1016/S0079-6123(05)51011-2CrossrefGoogle Scholar

  • [15] Katoh Y.Y., Benedek G., Deura S., Bilateral projection from the superior colliculus to the suprageniculate nucleus in the cat: a WGA-HRP/double fluorescent tracing study, Brain Res., 1995, 669, 298–302 http://dx.doi.org/10.1016/0006-8993(94)01203-TCrossrefGoogle Scholar

  • [16] Hoshino K., Eördegh G., Nagy A., Benedek G., Norit M. Overla of nigrothalamic terminals and thalamostriatal neurons in the feline lateralis medialis-suprageniculate nucleus, Acta Physiol. Hung., 2009, 96, 203–211 http://dx.doi.org/10.1556/APhysiol.96.2009.2.5CrossrefGoogle Scholar

  • [17] Livingstone M., Hubel D., Segregation of form, color, movement, and depth: anatomy, physiology, and perception, Science, 1988, 240, 740–749 http://dx.doi.org/10.1126/science.3283936CrossrefGoogle Scholar

  • [18] Nassi J.J., Callaway E.M., Parallel processing strategies of the primate visual system, Nat. Rev. Neurosci., 2009, 10, 360–372 http://dx.doi.org/10.1038/nrn2619CrossrefGoogle Scholar

  • [19] Nagy A., Eördegh G., Benedek G., Spatial and temporal visual properties of single neurons in the feline anterior ectosylvian visual area, Exp. Brain Res., 2003, 151, 108–114 http://dx.doi.org/10.1007/s00221-003-1488-3CrossrefGoogle Scholar

  • [20] Hubel D.H., Wiesel T.N., Integrative action in the cat’s lateral geniculate body, J. Physiol., 1961, 155, 385–398 Google Scholar

  • [21] Hubel D.H., Wiesel T.N., Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol., 1962, 160, 106–154 Google Scholar

  • [22] Middlebrooks J.C., Clock A.E., Xu L., Green D.M., A panoramic code for sound location by cortical neurons, Science, 1994, 264, 842–844 http://dx.doi.org/10.1126/science.8171339CrossrefGoogle Scholar

  • [23] Middlebrooks J.C., Xu L., Furukawa S., Macpherson E.A. Cortical neurones that localize sounds, Neuroscientist, 2002, 8, 73–83 http://dx.doi.org/10.1177/107385840200800112CrossrefGoogle Scholar

  • [24] Nagy A., Berényi A., Paróczy Z., Márkus Z., Braunitzer G., Benedek G., presented at the 38th Annual Meeting of the Society for Neuroscience, Washington, USA, 15–19 November 2008 Google Scholar

  • [25] Katoh Y.Y., Benedek G., Organization of the colliculo-suprageniculate pathway int he cat: a wheat germ agglutinin-horseradish peroxidase study, J. Comp. Neurol., 1995, 352, 381–397 http://dx.doi.org/10.1002/cne.903520306CrossrefGoogle Scholar

  • [26] Movshon J.A., Thompson I.D., Tolhurst D.J., Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex, J. Physiol. (Lond.), 1978, 283, 101–120 Google Scholar

  • [27] Saul A.B., Humphrey A.L., Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus, J. Neurophysiol., 1990, 64, 206–224 Google Scholar

  • [28] Nagy A., Paróczy Z., Márkus Z., Berényi A., Wypych M., Waleszczyk W.J., et al., Drifting grating stimulation reveals particular activation properties of visual neurons in the caudate nucleus, Eur. J. Neurosci., 2008, 27, 1801–1808 http://dx.doi.org/10.1111/j.1460-9568.2008.06137.xCrossrefGoogle Scholar

  • [29] Paróczy Z., Nagy A., Márkus Z., Waleszczyk W.J., Wypych M., Benedek G., Spatial and temporal visual properties of single neurons in the suprageniculate nucleus of the thalamus, Neuroscience, 2006, 137, 1397–1404 http://dx.doi.org/10.1016/j.neuroscience.2005.10.068CrossrefGoogle Scholar

  • [30] Waleszczyk W.J., Nagy A., Wypych M., Berényi A., Paróczy Z., Eördegh G., et al., Spectral receptive field properties of neurons in the feline superior colliculus, Exp. Brain Res., 2007, 181, 87–98 http://dx.doi.org/10.1007/s00221-007-0908-1CrossrefGoogle Scholar

  • [31] Márkus Z., Berényi A., Paróczy Z., Wypych M., Waleszczyk W.J., Benedek G., et al., Spatial and temporal visual properties of the neurons in the intermediate layers of the superior colliculus, Neurosci. Lett., 2009, 454, 76–80 http://dx.doi.org/10.1016/j.neulet.2009.02.063CrossrefGoogle Scholar

  • [32] Villeneuve M.Y., Casanova C., On the use of isoflurane versus halothane in the study of visual response properties of single cells in the primary visual cortex, J. Neurosci. Meth., 2003, 129, 19–31 http://dx.doi.org/10.1016/S0165-0270(03)00198-5CrossrefGoogle Scholar

  • [33] Campbell F.W., Cooper G.F., Enroth-Cugell C., The spatial selectivity of the visual cells of the cat, J. Physiol., 1969, 203, 223–235 Google Scholar

  • [34] Saul A.B., Humphrey A.L., Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus, J. Neurophysiol., 1990, 64, 206–224 Google Scholar

  • [35] Waleszczyk W.J., Nagy A., Wypych M., Berényi A., Paróczy Z., Eördegh G., et al., Spectral receptive field properties of neurons in the feline superior colliculus., Exp. Brain Res., 2007, 181, 87–98 http://dx.doi.org/10.1007/s00221-007-0908-1CrossrefGoogle Scholar

  • [36] Pinter R.B., Harris L.R., Temporal and spatial response characteristics of the cat superior colliculus, Brain Res., 1981, 207, 73–94 http://dx.doi.org/10.1016/0006-8993(81)90680-6CrossrefGoogle Scholar

  • [37] Mimeault D., Paquet V., Molotchnikoff S., Lepore F., Guillemot J.P., Disparity sensitivity in the superior colliculus of the cat, Brain Res., 2004, 1010, 87–94 http://dx.doi.org/10.1016/j.brainres.2004.02.058CrossrefGoogle Scholar

  • [38] Meredith M.A., Stein B.E., Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration, J. Neurophysiol., 1986, 56, 640–662 Google Scholar

  • [39] Stein B.E., Meredith M.A., Functional organization of the superior colliculus, In: Leventhal A.G., (Ed.), The neural basis of visual function, Macmillan, UK, 1991 Google Scholar

  • [40] Sprague J.M., The role of the superior colliculus in facilitating visual attention and form perception, Proc. Natl. Acad. Sci. USA, 1991, 88, 1286–1290 http://dx.doi.org/10.1073/pnas.88.4.1286CrossrefGoogle Scholar

  • [41] Cowie R.J., Robinson D.L., Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus, J. Neurophysiol., 1994, 72, 2648–2664 Google Scholar

  • [42] Freedman E.G., Sparks D.L., Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command, J. Neurophysiol., 1997, 78, 1669–1690 Google Scholar

  • [43] Werner W., Dannenberg S., Hoffmann K.P., Arm-movement-related neurons in the primate superior colliculus and underlying reticular formation: comparison of neuronal activity with EMGs of muscles of the shoulder, arm and trunk during reaching, Exp. Brain Res., 1997, 115, 191–205 http://dx.doi.org/10.1007/PL00005690CrossrefGoogle Scholar

  • [44] Harting J.K., Updyke B.V., Van Lieshout D.P., Striatal projections from the cat visual thalamus, Eur. J. Neurosci., 2001, 14, 893–896 http://dx.doi.org/10.1046/j.0953-816x.2001.01712.xCrossrefGoogle Scholar

  • [45] Harting J.K., Updyke B.V., Van Lieshout D.P., The visual-oculomotor striatum of the cat: functional relationship to the superior colliculus, Exp. Brain Res., 2001, 136, 138–142 http://dx.doi.org/10.1007/s002210000606CrossrefGoogle Scholar

  • [46] De Valois K.K., De Valois R.L., Yund E.W., Responses of striate cortex cells to grating and checkerboard patterns, J. Physiol., 1979, 291, 483–505 Google Scholar

  • [47] Enroth-Cugell C., Robson J.G., The contrast sensitivity of retinal ganglion cells of the cat, J. Physiol., 1966, 187, 517–552 Google Scholar

  • [48] Zumbroich T., Price D.J., Blakemore C., Development of spatial and temporal selectivity in the suprasylvian visual cortex of the cat, J. Neurosci., 1988, 8, 2713–2728 Google Scholar

  • [49] Wang C., Dreher B., Assaad N., Ptito M., Burke W., Excitatory convergence of Y and non-Y channels onto single neurons in the anterior ectosylvian visual area of the cat, Eur. J. Neurosci., 1998, 10, 2945–2956 http://dx.doi.org/10.1046/j.1460-9568.1998.00308.xCrossrefGoogle Scholar

  • [50] Anderson S.J., Burr D.C., Spatial and temporal selectivity of the human motion detection system, Vision Res., 1985, 25, 1147–1154 http://dx.doi.org/10.1016/0042-6989(85)90104-XCrossrefGoogle Scholar

  • [51] Burr D.C., Ross J., Visual processing of motion, Trends Neurosci., 1986, 9, 304–307 http://dx.doi.org/10.1016/0166-2236(86)90088-3CrossrefGoogle Scholar

  • [52] Burr D.C., Ross J., Morrone M., Seeing objects in motion, Proc. Roy. Soc. Lond. B., 1986, 227, 249–265 http://dx.doi.org/10.1098/rspb.1986.0022CrossrefGoogle Scholar

About the article

Published Online: 2010-01-30

Published in Print: 2010-02-01

Citation Information: Open Life Sciences, Volume 5, Issue 1, Pages 21–30, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0065-6.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Anett Júlia Nagy, Antal Berényi, Károly Gulya, Masao Norita, György Benedek, and Attila Nagy
Neuroscience Letters, 2011, Volume 503, Number 1, Page 52

Comments (0)

Please log in or register to comment.
Log in