Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 5, Issue 1

Issues

Volume 10 (2015)

ACAT-1, Cav-1 and PrP expression in scrapie susceptible and resistant sheep

Cristina Orrù / Claudia Abete / M. Dolores Cannas / Claudia Mulas / Claudia Norfo / Antonella Mandas / Sarah Vascellari / Paolo Colla / Sandra Dessì / Alessandra Pani
Published Online: 2010-01-30 | DOI: https://doi.org/10.2478/s11535-009-0076-3

Abstract

Scrapie is a prion disease for which no means of ante-mortem diagnosis is available. We recently found a relationship between cell susceptibility to scrapie and altered cholesterol homeostasis. In brains and in skin fibroblasts and peripheral blood mononuclear cells from healthy and scrapie-affected sheep carrying a scrapie-susceptible genotype, the levels of cholesterol esters were consistently higher than in tissues and cultures derived from animals with a scrapie-resistant genotype. Here we show that intracellular accumulation of cholesterol esters (CE) in fibroblasts derived from scrapie-susceptible sheep was accompanied by parallel alterations in the expression level of acyl-coenzymeA: cholesterol-acyltransferase (ACAT1) and caveolin-1 (Cav-1) that are involved in the pathways leading to intracellular cholesterol esterification and trafficking. Comparative analysis of cellular prion protein (PrPc) mRNA, showed an higher expression level in cells from animals carrying a susceptible genotype, with or without Scrapie. These data suggest that CE accumulation in peripheral cells, together with the altered expression of some proteins implicated in intracellular cholesterol homeostasis, might serve to identify a distinctive lipid metabolic profile associated with increased susceptibility to develop prion disease following infection.

Keywords: Scrapie; Prion diseases; Cholesterol homeostasis; Cholesterol esters

  • [1] Prusiner S.B., Prions, Proc. Natl. Acad. Sci. USA, 1998, 95, 13363–13383 http://dx.doi.org/10.1073/pnas.95.23.13363CrossrefGoogle Scholar

  • [2] Gorodinsky A., Harris D.A., Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin, J. Cell Biol., 1995, 129, 619–627 http://dx.doi.org/10.1083/jcb.129.3.619CrossrefGoogle Scholar

  • [3] Loberto N., Prioni S., Bettiga A., Chigorno V., Prinetti A., Sonnino S., The membrane environment ofendogenous cellular prion protein in primary rat cerebellar neurons., J. Neurochem., 2005, 95, 771–783 http://dx.doi.org/10.1111/j.1471-4159.2005.03397.xCrossrefGoogle Scholar

  • [4] Kurzchalia T.V., Parton R.G., Membrane microdomains and caveolae, Curr. Op. Cell Biol., 1999, 11, 424–431 http://dx.doi.org/10.1016/S0955-0674(99)80061-1CrossrefGoogle Scholar

  • [5] Vey M., Pilkuhn S., Wille H., Nixon R., DeArmond S.J., Smart E.J., et al., Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains, Proc. Natl. Acad. Sci. USA, 1996, 93, 14945–14949 http://dx.doi.org/10.1073/pnas.93.25.14945CrossrefGoogle Scholar

  • [6] Simons K., Ehehalt R., Cholesterol, lipid raft and disease, J. Clin. Invest., 2002, 110, 597–603 Google Scholar

  • [7] Taraboulos A., Scott M., Semenov A., Avrahami D., Laszlo L., Prusiner S.B., Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform, J. Cell Biol., 1995, 129, 121–132 http://dx.doi.org/10.1083/jcb.129.1.121CrossrefGoogle Scholar

  • [8] Diomede L., Forloni G., Bugiani O., Tagliavini F., Salmona M., The prion protein and cellular cholesterol homeostasis, Neurobiol. Lipids, 2002, 1, 8–14 Google Scholar

  • [9] Prado A.M., Silva J.A., Magalhaes A.C., Prado V.F., Linden R., Martins V.R., et al., PrPc on the road: trafficking of the cellular prion protein, J. Neurochem., 2004, 88, 769–781 http://dx.doi.org/10.1046/j.1471-4159.2003.02199.xCrossrefGoogle Scholar

  • [10] Critchley P., Kazlauskaite J., Eason R., Pinheiro T.J., Binding of prion protein to lipid membranes, Biochem. Biophys. Res. Commun., 2004, 313, 559–567 http://dx.doi.org/10.1016/j.bbrc.2003.12.004CrossrefGoogle Scholar

  • [11] Schmitz G., Orso E., Intracellular Cholesterol and Phospholipid Trafficking: Comparable Mechanisms in Macrophages and Neuronal Cells, Cell Mol. Life Sci., 2001, 26, 1045–1068 Google Scholar

  • [12] Maxfield, F.R., Tabas I., Role of cholesterol and lipid organization in disease, Nature, 2005, 438, 612–621 http://dx.doi.org/10.1038/nature04399CrossrefGoogle Scholar

  • [13] Simons K., Ikonen E., How cell handle cholesterol, Science, 2000, 290, 1721–1726 http://dx.doi.org/10.1126/science.290.5497.1721CrossrefGoogle Scholar

  • [14] Binder W.H., Barragan V., Menger F.M., Domains and raft in lipid membrane. Angewandte chemie-international edition, 2003, 42, 5802–5827 http://dx.doi.org/10.1002/anie.200300586CrossrefGoogle Scholar

  • [15] Pani A., Abete C., Norfo C., Mulas C., Laconi S., Cannas M.D., et al., Cholesterol Metabolism in Brain and Skin Fibroblasts from Sarda Breed Sheep With Scrapie-resistant and Scrapie-susceptible Genotypes, Am. J. Infec. Dis., 2007, 3, 143–150 Google Scholar

  • [16] Pani A., Norfo C., Abete C., Mulas C., Putzolu M., Laconi S., et al., Accumulation of Cholesterol Esters in ex vivo Lymphocytes from Scrapie-susceptible Sheep and in Scrapie-infected Mouse Neuroblastoma Cell Lines, Am. J. Infec. Dis., 2007, 3, 165–168 http://dx.doi.org/10.3844/ajidsp.2007.165.168CrossrefGoogle Scholar

  • [17] Pani A., Norfo C., Abete C., Mulas C., Putzolu M., Laconi S., et al., Anti-prion activity of cholesterol esterification modulators: a comparative study in ex vivo sheep fibroblasts and lymphocytes and in mouse neuroblastoma cell lines, Antimicrob. Agents Chemother., 2007, 51, 4141–4147 http://dx.doi.org/10.1128/AAC.00524-07CrossrefGoogle Scholar

  • [18] Bate C., Williams A., Role of glycosylphosphatidylinositols in the activation of phospholipase A2 and the neurotoxicity of prions, J. Gen. Virol., 2004, 85, 3797–3804 http://dx.doi.org/10.1099/vir.0.80366-0CrossrefGoogle Scholar

  • [19] Gilch S., Kehler C., Schätzl H.M., The prion protein requires cholesterol for cell surface localization, Mol. Cell. Neurosci., 2006, 31, 346–353 http://dx.doi.org/10.1016/j.mcn.2005.10.008CrossrefGoogle Scholar

  • [20] Mok S.W., Thelen K.M., Riemer C., Bamme T., Gültner S., Lütjohann D., et al., Simvastatin prolongs survival times in prion infections of the central nervous system, Biochem. Biophys. Res. Commun., 2006, 348, 697–702 http://dx.doi.org/10.1016/j.bbrc.2006.07.123CrossrefGoogle Scholar

  • [21] Pani A., Dessì S., Cell Growth and Cholesterol Esters, Kluwer Academic Press/Plenum Publishers, New York, NY, USA, 2004 Google Scholar

  • [22] Soto C., Castilla J., The controversial protein-only hypothesis of prion propagation, Nat. Med., 2004, 10, S63–S67 http://dx.doi.org/10.1038/nm1069CrossrefGoogle Scholar

  • [23] Wickner R.B., Edskes H.K., Roberts B.T., Baxa U., Pierce M.M., Ross E.D., et al., Prions: proteins as genes and infectious entities, Genes Dev., 2004, 18, 470–485 http://dx.doi.org/10.1101/gad.1177104CrossrefGoogle Scholar

  • [24] Goldmann W., Baylis M., Chihota C., Stevenson E., Hunter N., Frequencies of PrP gene haplotypes in British sheep flocks and the implications for breeding programmes, J. Appl. Microbiol., 2005, 98, 1294–1302 http://dx.doi.org/10.1111/j.1365-2672.2005.02568.xCrossrefGoogle Scholar

  • [25] Safar J.G., Wille H., Geschwind M.D., Deering C., Latawiec D., Serban A., et al., Human prions and plasma lipoproteins, Proc. Natl. Acad. Sci. USA, 2006, 103, 11312–11317 http://dx.doi.org/10.1073/pnas.0604021103CrossrefGoogle Scholar

  • [26] Harris D.A., Trafficking, turnover and membrane topology of PrP, Brit. Med. Bull., 2003, 66, 71–85 http://dx.doi.org/10.1093/bmb/66.1.71CrossrefGoogle Scholar

  • [27] Sarnataro D., Campana V., Paladino S.M., Stornaiuolo M., Nitsch L., Zurzolo C., PrPC Association with Lipid Rafts in the Early Secretory Pathway Stabilizes Its cellular conformation, Mol. Biol. Cell., 2004, 15, 4031–4042 http://dx.doi.org/10.1091/mbc.E03-05-0271CrossrefGoogle Scholar

  • [28] Campana V., Sarnataro D., Fasano C., Casanova P., Paladino S., Zurzolo C., Detergent-resistant membrane domains but not the proteasome are involved in the misfolding of a PrP mutant retained in the endoplasmic reticulum, J. Cell Sci., 2006, 119, 433–442 http://dx.doi.org/10.1242/jcs.02768CrossrefGoogle Scholar

  • [29] Abid K., Soto C., The intriguing prion disorders, Cell. Mol. Life Sci., 2006, 63, 2342–2351 http://dx.doi.org/10.1007/s00018-006-6140-5CrossrefGoogle Scholar

  • [30] Russelakis-Carneiro M., Hetz C., Maundrell K., Soto C. Prion replication alters the distribution of synaptophysin and caveolin 1 in neuronal lipid rafts, Am. J. Pathol., 2004, 165, 1839–1848 Google Scholar

About the article

Published Online: 2010-01-30

Published in Print: 2010-02-01


Citation Information: Open Life Sciences, Volume 5, Issue 1, Pages 31–37, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0076-3.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Christina Orrù, M. Cannas, Sarah Vascellari, Fabrizio Angius, Pier Cocco, Claudia Norfo, Antonella Mandas, Paolo La Colla, Giacomo Diaz, Sandra Dessì, and Alessandra Pani
Open Life Sciences, 2010, Volume 5, Number 2

Comments (0)

Please log in or register to comment.
Log in