Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1


Volume 10 (2015)

De-intercalation of ethidium bromide and propidium iodine from DNA in the presence of caffeine

Jacek Piosik
  • Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, 80-822, Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kacper Wasielewski
  • Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, 80-822, Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Woziwodzka
  • Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, 80-822, Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wojciech Śledź
  • Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, 80-822, Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Gwizdek-Wiśniewska
  • Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, 80-822, Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-01-30 | DOI: https://doi.org/10.2478/s11535-009-0077-2


Caffeine (CAF) is capable of interacting directly with several genotoxic aromatic ligands by stacking aggregation. Formation of such hetero-complexes may diminish pharmacological activity of these ligands, which is often related to its direct interaction with DNA. To check these interactions we performed three independent series of spectroscopic titrations for each ligand (ethidium bromide, EB, and propidium iodine, PI) according to the following setup: DNA with ligand, ligand with CAF and DNA-ligand mixture with CAF. We analyzed DNA-ligand and ligand-CAF mixtures numerically using well known models: McGhee-von Hippel model for ligand-DNA interactions and thermodynamic-statistical model of mixed association of caffeine with aromatic ligands developed by Zdunek et al. (2000). Based on these models we calculated association constants and concentrations of mixture components using a novel method developed here. Results are in good agreement with parameters calculated in separate experiments and demonstrate de-intercalation of EB and PI molecules from DNA caused by CAF.

Keywords: Caffeine; Ethidium bromide; Propidium iodine; De-intercalation; Interception; Light absorption spectroscopy; Genotoxic compounds

  • [1] Fritzsche H., Petri I., Schutz H., Weller K., Sedmera P., Lang H., On the interaction of caffeine with nucleic acids. III. 1H NMR studies of caffeine- 5′-adenosine monophosphate and caffeine-poly(riboadenylate) interactions, Biophys. Chem., 1980, 11, 109–119 http://dx.doi.org/10.1016/0301-4622(80)85013-7Google Scholar

  • [2] Bolotin P.A., Baranovsky S.F., Evstigneev M.P., Spectrophotometric investigation of the hetero-association of caffeine and thiazine dye in aqueous solution, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 64, 693–697 http://dx.doi.org/10.1016/j.saa.2005.08.005CrossrefGoogle Scholar

  • [3] Kapuscinski J., Kimmel M., Thermodynamical model of mixed aggregation of intercalators with caffeine in aqueous solution, Biophys. Chem., 1993, 35, 46–53 Google Scholar

  • [4] Lyles M.B., Cameron I.L., Interactions of the DNA intercalator acridine orange, with itself, with caffeine, and with double stranded DNA, Biophys. Chem., 2002, 96, 53–76 http://dx.doi.org/10.1016/S0301-4622(02)00036-4CrossrefGoogle Scholar

  • [5] Lyles M.B., Cameron I.L., Caffeine and other xanthines as cytochemical blockers and removers of heterocyclic DNA intercalators from chromatin, Cell Biol. Int., 2002, 26, 145–154 http://dx.doi.org/10.1006/cbir.2001.0810CrossrefGoogle Scholar

  • [6] Zdunek M., Piosik J., Kapuscinski J., Thermodynamical model of mixed aggregation of ligands with caffeine in aqueous solution. Part II, Biophys. Chem., 2000, 84, 77–85 http://dx.doi.org/10.1016/S0301-4622(99)00152-0CrossrefGoogle Scholar

  • [7] Kimura H., Aoyama, T., Decrease in sensitivity to ethidium bromide by caffeine, dimethylsulfoxide or 3-aminobenzamide due to reduced permeability, J. Pharmacobiodyn., 1989, 12, 589–595 Google Scholar

  • [8] Piosik J., Gwizdek-Wisniewska A., Ulanowska K., Ochocinski J., Czyz A., Wegrzyn G., Methylxanthines (caffeine, pentoxifylline and theophylline) decrease the mutagenic effect of daunomycin, doxorubicin and mitoxantrone, Acta Biochim. Pol., 2005, 52, 923–926 Google Scholar

  • [9] Piosik J., Zdunek M., Kapuscinski J., The modulation by xanthines of the DNA-damaging effect of polycyclic aromatic agents. Part II. The stacking complexes of caffeine with doxorubicin and mitoxantrone, Biochem. Pharmacol., 2002, 63, 635–646 http://dx.doi.org/10.1016/S0006-2952(01)00903-0CrossrefGoogle Scholar

  • [10] Evstigneev M.P., Evstigneev V.P., Davies D.B., NMR investigation of the effect of caffeine on the hetero-association of an anticancer drug with a vitamin, Chem. Phys. Lett., 2006, 432, 248–251 http://dx.doi.org/10.1016/j.cplett.2006.10.008CrossrefGoogle Scholar

  • [11] Evstigneev M.P., Rybakova K.A., Davies D.B., Complexation of norfloxacin with DNA in the presence of caffeine, Biophys. Chem., 2006, 121, 84–95 http://dx.doi.org/10.1016/j.bpc.2005.12.003CrossrefGoogle Scholar

  • [12] Fritzsche H., Lang H., Sprinz H., Pohle W., On the interaction of caffeine with nucleic acids. IV. Studies of the caffeine-DNA interaction by infrared and ultraviolet linear dichroism, proton and deuteron nuclear magnetic resonance, Biophys. Chem., 1980, 11, 121–131 http://dx.doi.org/10.1016/0301-4622(80)85014-9CrossrefGoogle Scholar

  • [13] McGhee J.D., von Hippel P.H., Theoretical Aspects of DNA-Protein Interactions: Co-operative and Non-co-operative Binding of Large Ligands to a One-dimensional Homogeneous Lattice., J. Mol. Biol., 1974, 86, 469–489 http://dx.doi.org/10.1016/0022-2836(74)90031-XCrossrefGoogle Scholar

  • [14] Weller K., Schutz H., Petri I., Thermodynamical model of indefinite mixed association of two components and NMR data analysis for caffeine — AMP interaction, Biophys. Chem., 1984, 19, 289–298 http://dx.doi.org/10.1016/0301-4622(84)87012-XCrossrefGoogle Scholar

  • [15] Baranovsky S.F., Bolotin P.A., Evstigneev M.P., Chernyshev D.N., Interaction of ethidium bromide and caffeine with DNA in aqueous solution, J. Appl. Spectroscopy, 2009, 76, 132–139 http://dx.doi.org/10.1007/s10812-009-9139-5CrossrefGoogle Scholar

  • [16] Bedner E., Du L., Traganos F., Darzynkiewicz Z., Caffeine dissociates complexes between DNA and intercalating dyes: application for bleaching fluorochrome-stained cells for their subsequent restaining and analysis by laser scanning cytometry, Cytometry, 2001, 43, 38–45 http://dx.doi.org/10.1002/1097-0320(20010101)43:1<38::AID-CYTO1017>3.0.CO;2-SCrossrefGoogle Scholar

  • [17] Davies D.B., Veselkov D.A., Djimant L.N., Veselkov A.N., Hetero-association of caffeine and aromatic drugs and their competitive binding with a DNA oligomer, Eur. Biophys. J., 2001, 30, 354–366 http://dx.doi.org/10.1007/s002490100150CrossrefGoogle Scholar

  • [18] Larsen R.W., Jasuja R., Hetzler R.K., Muraoka P.T., Andrada V.G., Jameson, D.M., Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators, Biophys. J., 1996, 70, 443–452 http://dx.doi.org/10.1016/S0006-3495(96)79587-5CrossrefGoogle Scholar

  • [19] Gaugain B., Barbet J., Capelle N., Roques B.P., Le Pecq J.B., DNA Bifunctional intercalators. 2. Fluorescence properties and DNA binding interaction of an ethidium homodimer and an acridine ethidium heterodimer, Biochemistry (Mosc)., 1978, 17, 5078–5088 http://dx.doi.org/10.1021/bi00617a002CrossrefGoogle Scholar

  • [20] Wilson W.D., Wang Y.H., Krishnamoorthy C.R., Smith J.C., Intercalators as probes of DNA conformation: propidium binding to alternating and non-alternating polymers containing guanine, Chem. Biol. Interact., 1986, 58, 41–56 http://dx.doi.org/10.1016/S0009-2797(86)80085-0CrossrefGoogle Scholar

  • [21] Alonso A., Almendral M.J., Curto Y., Criado J.J., Rodriguez E., Manzano J.L., Determination of the DNA-binding characteristics of ethidium bromide, proflavine, and cisplatin by flow injection analysis: usefulness in studies on antitumor drugs, Anal. Biochem., 2006, 355, 157–164 http://dx.doi.org/10.1016/j.ab.2006.06.004CrossrefGoogle Scholar

  • [22] Pietrzak M., Wieczorek Z., Wieczorek J., Darzynkiewicz Z., The “interceptor” properties of chlorophyllin measured within the three-component system: intercalator-DNA-chlorophyllin, Biophys. Chem., 2006, 123, 11–19 http://dx.doi.org/10.1016/j.bpc.2006.03.018CrossrefGoogle Scholar

About the article

Published Online: 2010-01-30

Published in Print: 2010-02-01

Citation Information: Open Life Sciences, Volume 5, Issue 1, Pages 59–66, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0077-2.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Poghos O. Vardevanyan, Ara P. Antonyan, Marine A. Parsadanyan, and Mariam A. Shahinyan
Journal of Biomolecular Structure and Dynamics, 2019, Page 1
Anupam Das, Chandan Adhikari, and Anjan Chakraborty
Langmuir, 2016, Volume 32, Number 35, Page 8889
Anupam Das, Chandan Adhikari, Debasis Nayak, and Anjan Chakraborty
Langmuir, 2016, Volume 32, Number 1, Page 159
Han Chang Kang, Hana Cho, and You Han Bae
Molecular Pharmaceutics, 2015, Volume 12, Number 8, Page 2845
Maxim P. Evstigneev
International Reviews in Physical Chemistry, 2014, Volume 33, Number 2, Page 229
Magdalena Makarska-Bialokoz
Journal of Molecular Structure, 2015, Volume 1081, Page 224
Galyna B. Skamrova, Ivan Laponogov, Anatoly S. Buchelnikov, Yuriy G. Shckorbatov, Svitlana V. Prylutska, Uwe Ritter, Yuriy I. Prylutskyy, and Maxim P. Evstigneev
European Biophysics Journal, 2014, Volume 43, Number 6-7, Page 265
Anna Woziwodzka, Grzegorz Gołuński, Dariusz Wyrzykowski, Rajmund Kaźmierkiewicz, and Jacek Piosik
Chemical Research in Toxicology, 2013, Volume 26, Number 11, Page 1660
Anna Woziwodzka, Grzegorz Gołuński, and Jacek Piosik
ISRN Biophysics, 2013, Volume 2013, Page 1
Grzegorz Gołuński, Anna Woziwodzka, Ievgeniia Iermak, Michał Rychłowski, and Jacek Piosik
Bioorganic & Medicinal Chemistry, 2013, Volume 21, Number 11, Page 3280
Gjertrud Maurstad, Bjørn T. Stokke, Kjell M. Vårum, and Sabina P. Strand
Carbohydrate Polymers, 2013, Volume 94, Number 1, Page 436
Magdalena Makarska-Bialokoz
Journal of Fluorescence, 2012, Volume 22, Number 6, Page 1521
A. S. Buchelnikov, A. A. Hernandez Santiago, M. Gonzalez Flores, R. Vazquez Ramirez, D. B. Davies, and M. P. Evstigneev
European Biophysics Journal, 2012, Volume 41, Number 3, Page 273
Anna Woziwodzka, Anna Gwizdek-Wiśniewska, and Jacek Piosik
Bioorganic Chemistry, 2011, Volume 39, Number 1, Page 10

Comments (0)

Please log in or register to comment.
Log in