Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1


Volume 10 (2015)

Dark respiration of leaves and traps of terrestrial carnivorous plants: are there greater energetic costs in traps?

Lubomír Adamec
  • Institute of Botany of the Academy of Sciences of the Czech Republic, Section of Plant Ecology, CZ-379 82, Třeboň, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-01-30 | DOI: https://doi.org/10.2478/s11535-009-0080-7


In this study, O2-based dark respiration rate (RD) in leaf and trap cuttings was compared in 9 terrestrial carnivorous plant species of 5 genera to decide whether traps represent a greater energetic (maintanence) cost than leaves or photosynthetic parts of traps. RD values of cut strips of traps or leaves of terrestrial carnivorous plants submerged in water ranged between 2.2 and 8.4 nmol g−1 s−1 (per unit dry weight) in pitcher traps of the genera Sarracenia, Nepenthes, and Cephalotus, while between 7.2 and 25 nmol g−1 DW s−1 in fly-paper or snapping traps or leaves of Dionaea and Drosera. No clear relationship between RD values of traps (or pitcher walls) and leaves (or pitcher wings or petioles) was found. However, RD values of separated Drosera prolifera tentacles exceeded those of leaf lamina 7.3 times.

Keywords: Sarracenia; Nepenthes; Cephalotus; Dionaea; Drosera; Aerobic respiration; Metabolic costs; Trap specialization

  • [1] Knight S.E., Costs of carnivory in the common bladderwort, Utricularia macrorhiza, Oecologia, 1992, 89, 348–355 Google Scholar

  • [2] Adamec L., Respiration and photosynthesis of bladders and leaves of aquatic Utricularia species, Plant Biol., 2006, 8, 765–769 http://dx.doi.org/10.1055/s-2006-924540CrossrefGoogle Scholar

  • [3] Juniper B.R., Robins R.J., Joel D.M., The carnivorous plants, Academic Press, London, 1989 Google Scholar

  • [4] Givnish T.J., Burkhardt E.L., Happel R.E., Weintraub J.D., Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats, Am. Natur., 1984, 124, 479–497 http://dx.doi.org/10.1086/284289CrossrefGoogle Scholar

  • [5] Adamec L., Investment in carnivory in Utricularia stygia and U. intermedia with dimorphic shoots, Preslia, 2007, 79, 127–139 Google Scholar

  • [6] Ellison A.M., Farnsworth E.J., The cost of carnivory for Darlingtonia californica (Sarraceniaceae): evidence from relationships among leaf traits, Am. J. Bot., 2005, 92, 1085–1093 http://dx.doi.org/10.3732/ajb.92.7.1085CrossrefGoogle Scholar

  • [7] Pavlovič A., Masarovičová E., Hudák J., Carnivorous syndrome in Asian pitcher plants of the genus Nepenthes, Ann. Bot., 2007, 100, 527–536 http://dx.doi.org/10.1093/aob/mcm145CrossrefGoogle Scholar

  • [8] Farnsworth E.J., Ellison A.M., Prey availability directly affects physiology, growth, nutrient allocation and scaling relationships among leaf traits in ten carnivorous plant species, J. Ecol., 2008, 96, 213–221 Google Scholar

  • [9] Hájek T., Adamec L., Photosynthesis and dark respiration of leaves of terrestrial carnivorous plants, Biologia, 2010, (in press) Google Scholar

  • [10] Givnish T.J., Adaptation to sun and shade: A whole plant perspective, Aust. J. Plant Physiol., 1988, 15, 63–92 http://dx.doi.org/10.1071/PP9880063CrossrefGoogle Scholar

  • [11] Méndez M., Karlsson P.S., Costs and benefits of carnivory in plants: insights from the photosynthetic performance of four carnivorous plants in a subarctic environment, Oikos, 1999, 86, 105–112 http://dx.doi.org/10.2307/3546574CrossrefGoogle Scholar

  • [12] Pavlovič A., Singerová L., Demko V., Hudák J., Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant Nepenthes talangensis, Ann. Bot., 2009, 104, 307–314 http://dx.doi.org/10.1093/aob/mcp121CrossrefGoogle Scholar

  • [13] Adamec L., The influence of prey capture on photosynthetic rate in two aquatic carnivorous plant species, Aquat. Bot., 2008, 89, 66–70 http://dx.doi.org/10.1016/j.aquabot.2008.01.008CrossrefGoogle Scholar

  • [14] Adamec L., Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake, New Phytol., 2002, 155, 89–100 http://dx.doi.org/10.1046/j.1469-8137.2002.00441.xCrossrefGoogle Scholar

  • [15] Adamec L., Ecophysiological characterization of carnivorous plant roots: oxygen fluxes, respiration, and water exudation. Biol. Plant., 2005, 49, 247–255 http://dx.doi.org/10.1007/s10535-005-7255-5CrossrefGoogle Scholar

  • [16] Adamec L., Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa, Aquat. Bot., 1997, 59, 297–306 http://dx.doi.org/10.1016/S0304-3770(97)00054-5CrossrefGoogle Scholar

  • [17] Laakkonen L., Jobson R.W., Albert V.A., A new model for the evolution of carnivory in the bladderwort plant (Utricularia): adaptive changes in cytochrome c oxidase (COX) provide respiratory power, Plant Biol., 2006, 8, 758–764 http://dx.doi.org/10.1055/s-2006-924459CrossrefGoogle Scholar

  • [18] Williams S.E., Pickard B.G., Receptor potentials and action potentials in Drosera tentacles, Planta, 1972, 103, 193–221 http://dx.doi.org/10.1007/BF00386844CrossrefGoogle Scholar

  • [19] Loveys B.R., Atkinson L.J., Sherlock D.J., Roberts R.L., Fitter A.H., Atkin O.K., Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast and slow growing plant species, Glob. Change Biol., 2003, 9, 895–910 http://dx.doi.org/10.1046/j.1365-2486.2003.00611.xCrossrefGoogle Scholar

  • [20] Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., et al., The world wide leaf economics spectrum, Nature, 2004, 428, 821–827 http://dx.doi.org/10.1038/nature02403CrossrefGoogle Scholar

  • [21] Shipley B., Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with the relative growth rate? A meta analysis, Funct. Ecol., 2006, 20, 565–574 http://dx.doi.org/10.1111/j.1365-2435.2006.01135.xCrossrefGoogle Scholar

About the article

Published Online: 2010-01-30

Published in Print: 2010-02-01

Citation Information: Open Life Sciences, Volume 5, Issue 1, Pages 121–124, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-009-0080-7.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Andrej Pavlovič and Michaela Saganová
Annals of Botany, 2015, Volume 115, Number 7, Page 1075
Jörg Kruse, Peng Gao, Anne Honsel, Jürgen Kreuzwieser, Tim Burzlaff, Saleh Alfarraj, Rainer Hedrich, and Heinz Rennenberg
Oecologia, 2014, Volume 174, Number 3, Page 839
B. M. Bruzzese, R. Bowler, H. B. Massicotte, and A. L. Fredeen
Photosynthetica, 2010, Volume 48, Number 1, Page 103

Comments (0)

Please log in or register to comment.
Log in