Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 5, Issue 4

Issues

Volume 10 (2015)

Evaluation of different culture techniques of osteoblasts on 3D scaffolds

Ying-ying Wu
  • Department of Implantology, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People’s Republic of China
  • State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yu Ban
  • Department of Implantology, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People’s Republic of China
  • State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ning Geng
  • Department of Pathology, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yong-yue Wang
  • Department of Implantology, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiao-guang Liu / Tao Yu
  • Department of Oral Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People’s Republic of China
  • State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ping Gong
  • Department of Implantology, West China College of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People’s Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-05-28 | DOI: https://doi.org/10.2478/s11535-010-0027-z

Abstract

Bones adjust their structure to withstand the mechanical demands they experience. It is suggested that flow-derived shear stress may be the most significant and primary mediator of mechanical stimulation. In this study, we designed and fabricated a fluid flow cell culture system that can load shear stress onto cells cultured on 3D scaffolds. We evaluated the effect of different culture techniques, namely, (1) continuous perfusion fluid flow, (2) intermittent perfusion fluid flow, and (3) static condition, on the proliferation of osteoblasts seeded on partially deproteinized bones. The flow rate was set at 1 ml/min for all the cells cultured using flow perfusion and the experiment was conducted for 12 days. Scanning electron microscopy analysis indicated an increase in cell proliferation for scaffolds subjected to fluid shear stress. In addition, the long axes of these cells lengthened along the flowing fluid direction. Continuous perfusion significantly enhanced cell proliferation compared to either intermittent perfusion or static condition. All the results demonstrated that fluid shear stress is able to enhance the proliferation of cells and change the form of cells.

Keywords: Osteoblast; 3D scaffold; Fluid shear stress

  • [1] Castellon P., Blatz M.B., Block M.S., Finger I.M., Rogers B., Immediate loading of dental implants in the edentulous mandible, J. Am. Dent. Assoc., 2004, 135, 1543–1549 CrossrefGoogle Scholar

  • [2] Esposito M., Grusovin M.G., Achille H., Coulthard P., Worthington H.V., Interventions for replacing missing teeth: different times for loading dental implants, Cochrane Database Syst. Rev., 2009, CD003878 Google Scholar

  • [3] Ibañez J.C., Jalbout Z.N., Immediate Loading of Osseotite Implants: Two-Year Results Clinical Science and Techniques, Implant. Dent., 2002, 11, 128–136 http://dx.doi.org/10.1097/00008505-200204000-00013CrossrefGoogle Scholar

  • [4] Petropoulos V.C., Balshi T.J., Balshi S.F., Extractions, Implant Placement, and Immediate Loading of Mandibular Implants: A Case Report of a Functional Fixed Prosthesis in 5 Hours, Implant. Dent., 2003, 12, 283–290 http://dx.doi.org/10.1097/01.ID.0000091123.29073.57CrossrefGoogle Scholar

  • [5] You L., Temiyasathit S., Lee P., Padmaja C.H.K., Yao W., Kingery W., et al., Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading, Bone, 2008, 42,172–179 http://dx.doi.org/10.1016/j.bone.2007.09.047CrossrefGoogle Scholar

  • [6] Bancroft G.N., Sikavitsas V.I., van den Dolder J., Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner, Proc. Natl. Acad. Sci. USA, 2002, 99, 12600–12605 http://dx.doi.org/10.1073/pnas.202296599CrossrefGoogle Scholar

  • [7] Cao L., Ding Y., Effects of estrogen and wall-shear stress on rat osteoblats in vitro, J. Pract. Stomatol., 2003, 19, 475–478 Google Scholar

  • [8] Klein N.J., van der Plas A., Semeins C.M., Sensitivity of osteocytes to biomechanical stress in vitro, FASEB J., 1995, 9, 441–445 Google Scholar

  • [9] Knothe Tate M.L., Niederer P., Knothe U., In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading, Bone, 1998, 22, 107–17 http://dx.doi.org/10.1016/S8756-3282(97)00234-2CrossrefGoogle Scholar

  • [10] Geng T., Luo F.S., Sun H.Y., Desiging a three-dimensional perfusion bioreactor system for bone tissue enginnering, J. Clin. Rehab. Tissue. Eng. Res., 2007, 11, 3476–3479 Google Scholar

  • [11] Jaasma M.J., Plunkett N.A., Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds, J. Biotechnol., 2008, 133, 490–496 http://dx.doi.org/10.1016/j.jbiotec.2007.11.010CrossrefGoogle Scholar

  • [12] Zhao F., Ma T., Perfusion bioreactor system for human mesenchymal stem cell tissue engineering using recirculation bioreactors, Biomaterials, 2005, 26, 7012–7014 http://dx.doi.org/10.1016/j.biomaterials.2005.04.062CrossrefGoogle Scholar

  • [13] Bjerrea L., Büngera C.E., Kassemb M., Myginda T., Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds, Biomaterials, 2008, 29, 2616–2627 http://dx.doi.org/10.1016/j.biomaterials.2008.03.003CrossrefGoogle Scholar

  • [14] van den Dolder J., Bancroft G.N., Sikavitasas V.I., Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh, J. Biomed. Mater. Res. A., 2003, 64, 235–241 http://dx.doi.org/10.1002/jbm.a.10365CrossrefGoogle Scholar

  • [15] Rieder M.J., Carmona R., Krieger JE., Pritchard K.A. Jr., Greene A.S., Suppression of angiotensin-converting enzyme expression and activity by shear stress, Circ. Res., 1997, 80, 312–319 CrossrefGoogle Scholar

  • [16] Sikavitsas V.I., Bancroft G.N., Holtorf H.L., Jansen J.A., Mikos A.G., Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces, Proc. Natl. Acad. Sci. USA, 2003, 100,14683–14688 http://dx.doi.org/10.1073/pnas.2434367100CrossrefGoogle Scholar

  • [17] Sikavitsas V.I., Bancroft G.N., Lemoine J.J., Liebschner M.A., Dauner M., Mikos A.G., Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds, Ann. Biomed. Eng., 2005, 33, 63–70 http://dx.doi.org/10.1007/s10439-005-8963-xCrossrefGoogle Scholar

  • [18] Norvell S.M., Alvarez M., Bidwell J.P., Pavalko F.M., Fluid Shear Stress Induces b-Catenin Signaling in Osteoblasts, Calcif. Tissue. Int., 2004, 75, 396–404 http://dx.doi.org/10.1007/s00223-004-0213-yCrossrefGoogle Scholar

  • [19] Orr D.E., Burg K.J., Design of a modular bioreactor to incorporate both perfusion flow and hydrostatic compression for tissue engineering applications, Ann. Biomed. Eng., 2008, 36, 1228–1241 http://dx.doi.org/10.1007/s10439-008-9505-0CrossrefGoogle Scholar

  • [20] Wang S.L., Liu N., Yang S.Y., Culture and identification of SD rat osteoblasts by modified enzymatic digestion in vitro, J. Clin. Rehab. Tissue. Eng. Res., 2008, 12, 2983–2987 Google Scholar

  • [21] Varghese S., Wyzga N., Griffiths A.M., Effects of Serum From Children with Newly Diagnosed Crohn Disease on Primary Cultures of Rat Osteoblasts, J. Pediatr. Gastroenterol. Nutr., 2002, 35, 641–648 http://dx.doi.org/10.1097/00005176-200211000-00010CrossrefGoogle Scholar

  • [22] Goldstein A.S., Juarez T.M., Helmke C.D., Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds, Biomaterials, 2001, 22, 1279–1288 http://dx.doi.org/10.1016/S0142-9612(00)00280-5CrossrefGoogle Scholar

  • [23] Myers K.A., Rattner J.B., Nigel G., Osteoblast-like cells and fluid flow: Cytoskeleton-dependent shear sensitivity, Biochem. Biophys. Res. Commun., 2007, 364, 214–219 http://dx.doi.org/10.1016/j.bbrc.2007.09.109CrossrefGoogle Scholar

  • [24] Wu D., Ding Y., Effects of fluid shear stress on the proliferation and cell cycle of rat osteoblasts in vitro, J. Clin. Stomatol., 2007, 23, 197–199 Google Scholar

About the article

Published Online: 2010-05-28

Published in Print: 2010-08-01


Citation Information: Open Life Sciences, Volume 5, Issue 4, Pages 456–465, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-010-0027-z.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yu Ban, Ying-ying Wu, Tao Yu, Ning Geng, Yong-yue Wang, Xiao-guang Liu, and Ping Gong
Tissue and Cell, 2011, Volume 43, Number 5, Page 311

Comments (0)

Please log in or register to comment.
Log in