Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz


IMPACT FACTOR 2018: 0.504
5-year IMPACT FACTOR: 0.583

CiteScore 2018: 0.63

SCImago Journal Rank (SJR) 2018: 0.266
Source Normalized Impact per Paper (SNIP) 2018: 0.311

ICV 2017: 154.48

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 5, Issue 5

Issues

Volume 10 (2015)

Antibacterial activity of oleanolic and ursolic acids and their derivatives

Krystyna Wolska
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Grudniak
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Beata Fiecek
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Kraczkiewicz-Dowjat
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Kurek
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-08-20 | DOI: https://doi.org/10.2478/s11535-010-0045-x

Abstract

Bacterial resistance to antibiotics is increasing at an alarming rate and many commonly used antibiotics are no longer effective. Thus, there is considerable interest in investigating novel antibacterial compounds, such as the plant-derived pentacyclic triterpenoids, including oleanolic acid (OA), ursolic acid (UA) and their derivatives. These compounds can be isolated from many medicinal and crop plants and their antibacterial, antiviral, antiulcer and anti-inflammatory effects are well documented. OA and UA are active against many bacterial species, particularly Gram-positive species, including mycobacteria. They inhibit bacterial growth and survival, and the spectrum of minimal inhibitory concentration (MIC) values is very broad. In addition, OA, UA and their derivatives display potent antimutagenic activity. Studies to identify the cellular targets and molecular mechanisms of OA and UA action were initiated a few years ago and it has already been demonstrated that both acids influence bacterial gene expression, the formation and maintenance of biofilms, cell autolysis and peptidoglycan turnover. Before these compounds can be used clinically as antimicrobial agents, further extensive studies are required to determine their cytotoxicity and the optimum mode of their application.

Keywords: Oleanolic acid; Ursolic acid; Antibacterial activity; Antimutagenic effect; Cellular targets

  • [1] Levy S.B., The challenge of antibiotics resistance, Sci. Am., 1998, 278, 46–53 http://dx.doi.org/10.1038/scientificamerican0398-46CrossrefGoogle Scholar

  • [2] Heinemann J.A., Can smart bullets penetrate magic bullet-proof vests, Drug. Discov. Today, 2001, 6, 875–878 http://dx.doi.org/10.1016/S1359-6446(01)01857-8CrossrefGoogle Scholar

  • [3] Chibani-Chennoufi S., Sidoti J., Bruttin A., Kutter E., Sarker S., Brussow H., In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy, Antimicrob. Agents Chemother., 2004, 48, 2558–2569 http://dx.doi.org/10.1128/AAC.48.7.2558-2569.2004CrossrefGoogle Scholar

  • [4] Guliani A., Pirri G., Nicoletto S.F., Antimicrobial peptides: an overview of a promising class of therapeutics, Cent. Eur. J. Biol., 2007, 2, 1–3 http://dx.doi.org/10.2478/s11535-007-0010-5CrossrefGoogle Scholar

  • [5] Cowan M.M., Plant products as antimicrobial agents, Clin. Microbiol. Rev., 1999, 12, 564–582 Google Scholar

  • [6] Connolly J.D., Hill R.A., Triterpenoids, Nat. Prod. Rep., 2008, 25, 794–830 http://dx.doi.org/10.1039/b718038cCrossrefGoogle Scholar

  • [7] Liu J., Oleanolic and ursolic acids: Research perspectives, J. Ethnopharmacol., 2005, 100, 92–94 http://dx.doi.org/10.1016/j.jep.2005.05.024CrossrefGoogle Scholar

  • [8] Farina C., Pinza M., Pifferi G., Synthesis and antiulcer activity of new derivatives of glycyrrhetic, oleanolic and ursolic acids, Pharmacology, 1998, 53, 22–32 Google Scholar

  • [9] Chen Y., Liu J., Yang X., Zhao X., Xu H., Oleanolic acid nanosuspensions: preparation, in vitro characterization and enhanced hepatoprotective effect, J. Pharm. Pharmacol., 2005, 57, 259–264 http://dx.doi.org/10.1211/0022357055407CrossrefGoogle Scholar

  • [10] Li D.W., Hyun J.H., Jeong C.S., Kim Y.S., Lee E.B., Antiinflammatory activity of a-hederin methyl ester from the alkaline hydrolysate of the butanol fraction of Kalopanax pictus bark extract, Biol. Pharm. Bull., 2003, 26, 429–433 http://dx.doi.org/10.1248/bpb.26.429CrossrefGoogle Scholar

  • [11] Nishino H., Nishino A., Takayasu J., Hasegawa T., Iwashima A., Hitahabayashi K., Inhibition of the tumor-promoting action of 12-O-tetradecanoylphorbol 13-acetate by some oleanane-type triterpenoid compounds, Cancer Res., 1988, 48, 5210–5215 Google Scholar

  • [12] Udayama M., Ohkawa M., Yoshida N., Kinjo J., Nohara T., Structures of three new oleanane glucuronides isolated from Lathyrus palustris var. pilosus and hepatoprotective activity, Chem. Pharm. Bull., 1998, 46, 1412–1415 CrossrefGoogle Scholar

  • [13] Ortiz-Andrade R.R., Garcia-Jimenez S., Castillo-Espana P., Ramirez-Avila G., Villalobos-Molina R., Estrada-Soto S., Alpha-glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: an anti-hyperglycemic agent, J. Ethnopharmacol., 2007, 109, 48–53 http://dx.doi.org/10.1016/j.jep.2006.07.002CrossrefGoogle Scholar

  • [14] Becker H., Scher J.M., Speakman J.B., Zapp J., Bioactivity guided isolation of antimicrobial compounds from Lythrum salicaria, Fitotherapia, 2005, 76, 580–584 http://dx.doi.org/10.1016/j.fitote.2005.04.011CrossrefGoogle Scholar

  • [15] Cunha W.R., Martins C., Ferreira de Silva D., Crotti A.E., Lopez N.P., Albuqureque S., In vitro trypanocidal activity of triterpenes from Miconia species, Planta Med., 2003, 69, 470–472 http://dx.doi.org/10.1055/s-2003-39719CrossrefGoogle Scholar

  • [16] Baglin I., Mitaine-Offer A.C., Nour M., Tan K., Cavé C., Lacaille-Dubois M.A., A review of natural and modified betulic, ursolic and echinocystic acid derivatives as potential antitumor and anti-HIV agents, Mini Rev. Med. Chem., 2003, 6, 525–539 http://dx.doi.org/10.2174/1389557033487917CrossrefGoogle Scholar

  • [17] Kashiwada Y., Wang H.K., Nagao T., Kitanaka S., Yasuda I., Fuijoka T., et al., Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids, J. Nat. Prod., 1998, 61, 1090–1095 http://dx.doi.org/10.1021/np9800710CrossrefGoogle Scholar

  • [18] Kashiwada Y., Nagao T., Hashimoto A., Ikeshiro Y., Okabe H. Casentino L.M., Lee K.H., Anti-AIDS agents. 38. Anti-HIV activity of 3-O-acyl ursolic acid derivatives, J. Nat. Prod., 2000, 63, 1619–1622 http://dx.doi.org/10.1021/np990633vGoogle Scholar

  • [19] Ma C., Nakamura N., Miyashiro H., Hattori M., Shimotohno K., Inhibitory effects of constituents from Cynomorium songsricum and related triterpene derivatives on HIV-1 protease, Chem. Pharm. Bull., 1999, 47, 141–145 Google Scholar

  • [20] Mengoni F., Lichtner M., Battinelli L., Marzi M., Mastoianni C.M., Vullo V., et al., In vitro anti-HIV activity of oleanolic acid on infected human mononuclear cells, Planta Med., 2002, 68, 111–114 http://dx.doi.org/10.1055/s-2002-20256CrossrefGoogle Scholar

  • [21] Fontanay S., Grare M., Mayer J., Finance C., Duval R.M., Ursolic, oleanolic and betulic acids: antibacterial spectra and selectivity indexes, J. Ethnopharmacol., 2008, 120, 272–276 http://dx.doi.org/10.1016/j.jep.2008.09.001CrossrefGoogle Scholar

  • [22] Daffe M., Draper P., The envelope layers of mycobacteria with reference to their pathogenicity, Adv. Microbiol. Physiol., 1988, 39, 131–203 http://dx.doi.org/10.1016/S0065-2911(08)60016-8CrossrefGoogle Scholar

  • [23] Zumla A., Grange J., Tuberculosis, Br. Med. J., 1998, 316, 1962–1964 Google Scholar

  • [24] Bamuamba K., Gammon D.W., Meyers P., Dijoux-Franca M.-G., Scott G., Anti-mycobacterial activity of five plant species used as traditional medicines in the Western Cape Province (South Africa), J. Ethnopharmacol., 2008, 117, 385–390 http://dx.doi.org/10.1016/j.jep.2008.02.007CrossrefGoogle Scholar

  • [25] Mosam T., Rapid colorimetric assay for cell growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Meth., 1983, 65, 55–63 http://dx.doi.org/10.1016/0022-1759(83)90303-4CrossrefGoogle Scholar

  • [26] Tanachatchairatana T., Bremner J.B., Chokchaisiri R., Suksamraran A., Antimycobacterial activity of cinnamate-based esters of the triterpenes betulic, oleanolic and ursolic acids, Chem. Pharm. Bull., 2008, 56, 194–198 http://dx.doi.org/10.1248/cpb.56.194CrossrefGoogle Scholar

  • [27] Rojas R., Caviedes L., Aponte J.C., Vaisberg A.J., Lewis W.H., Lamas G., et al., Aegicerin, the first oleanane triterpene with wide-ranging antimycobacterial activity, isolated from Clavija procera, J. Nat. Prod., 2006, 69, 845–846 http://dx.doi.org/10.1021/np050554lCrossrefGoogle Scholar

  • [28] Horiuchi K., Shiota S., Hatano T, Yoshida T, Kuroda T., Tsuchiya T., Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE), Biol. Pharm. Bull., 2007, 30, 1147–1149 http://dx.doi.org/10.1248/bpb.30.1147CrossrefGoogle Scholar

  • [29] Zheng C.-J., Sohn M.-J., Kim K.-Y., Yu H.-E., Kim W-G., Olean-27-carboxylic acid-type triterpenes with potent antibacterial activity from Aceriphyllum rossii, J. Agric. Food Chem., 2008, 56, 11752–11756 http://dx.doi.org/10.1021/jf802832wCrossrefGoogle Scholar

  • [30] Woldemichael G.M., Singh M.P., Maiese W.M., Timmermann B.N., Constituents of antibacterial extract of Caesalpinia paraguarensis Burk, Z. Naturforsch., 2003, 53, 70–75 Google Scholar

  • [31] Szakiel A., Ruszkowski D., Grudniak A., Kurek A., Wolska K.I., Doligalska M., et al., Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis), Planta Med., 2008, 74, 1709–1715 http://dx.doi.org/10.1055/s-0028-1088315CrossrefGoogle Scholar

  • [32] Collins L., Franzblau S.F, Microplate alarm blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium, Antimicrob. Agents Chemother., 1997, 41, 1004–1009 Google Scholar

  • [33] Gu J.-Q., Wang Y., Franzblau S.G., Montenegro G., Timmermann B.N., Constituents of Quinchamalium majus with potential antitubercular activity, Z. Naturforsch., 2004, 59, 797–802 Google Scholar

  • [34] Gu J.-Q., Wang Y., Franzblau S.G., Montenegro G., Yang D., Timmermann B.N., Antitubercular constituents of Valeriana laxiflora, Planta Med., 2004, 70, 509–514 http://dx.doi.org/10.1055/s-2004-827149CrossrefGoogle Scholar

  • [35] Jiménez-Arellanes A., Meckes M., Torres J., Luna-Herrera J., Antimycobacterial triterpenoids from Lantana hispida (Verbenaceae), J. Ethnopharmacol., 2007, 111, 202–205 http://dx.doi.org/10.1016/j.jep.2006.11.033CrossrefGoogle Scholar

  • [36] Caldwell C.G., Franzblau S.G., Suarez E., Timmermann B.N., Oleanane triterpenes from Junellia tridens, J. Nat. Prod., 2000, 63, 1611–1614 http://dx.doi.org/10.1021/np0002233CrossrefGoogle Scholar

  • [37] Cantrell C.L., Lu T.S., Fronczek F.R., Fischer N.H., Adams L.B., Franzblau S.G., Antimicrobial cycloartanes from Borrichia frutescens, J. Nat. Prod., 1996, 59, 1131–1136 http://dx.doi.org/10.1021/np960551wCrossrefGoogle Scholar

  • [38] Singh M.P., Petersen P.J., Weiss W.J., Kong F., Greenstein M., Saccharomycins, novel heptadecaglycoside antibiotics produced by Saccharothrix espanaensis: Antibacterial and mechanistic activities, Antimicrob. Agents Chemother., 2000, 44, 2154–2159 http://dx.doi.org/10.1128/AAC.44.8.2154-2159.2000CrossrefGoogle Scholar

  • [39] National Committee for Clinical Laboratory Standards, Methods for antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard M7-A6, NCCLS, Wayne, PA, USA, 2003 Google Scholar

  • [40] Scalon Cunha L.C., Andrade e Silva M.L., Cardoso Furtado N.A., Vinholis A.H., Gomes Martins C.H., da Silva Filho A.A., et al., Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens, Z. Naturforsch., 2007, 62, 668–672 Google Scholar

  • [41] Timbekova A.E., Isaev M.I., Abubakirov N.K., Chemistry and biological activity of triterpenoid glycosides from Medicago sativa, Adv. Exp. Med. Biol., 1996, 405, 171–182 CrossrefGoogle Scholar

  • [42] Yadava R.N., A new biologically active triterpenoid saponin from the leaves of Lepidagathis hyalina Nees, Nat. Prod. Lett., 2001, 15, 315–322 CrossrefGoogle Scholar

  • [43] Yadava R.N., Jharbade J., A new bioactive triterpenoid saponin from the seeds of Lactuca scariola Linn, Nat. Prod. Res., 2007, 21, 500–506 http://dx.doi.org/10.1080/14786410601130125CrossrefGoogle Scholar

  • [44] Kuete V., Wabo G.F., Ngameni B., Mbaveng A.T., Metuno R., Etoa F.X., et al., Antimicrobial activity of the methanolic extract, fractions and compounds from the stem bark of Irvingia gabonensis (Ixonanthaceae), J. Ethnopharmacol., 2007, 114, 54–60 http://dx.doi.org/10.1016/j.jep.2007.07.025CrossrefGoogle Scholar

  • [45] Cai L., Wu C.D., Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens, J. Nat. Prod., 1996, 59, 987–990 http://dx.doi.org/10.1021/np960451qCrossrefGoogle Scholar

  • [46] Djoukeng J.D., Abou-Mansour E., Tabacchi R., Tapondjou A.L., Bouda H., Lontsi D., Antibacterial triterpenes from Syzygium guineense (Myrtaceae), J. Ethnopharmacol., 2005, 101, 283–286 http://dx.doi.org/10.1016/j.jep.2005.05.008CrossrefGoogle Scholar

  • [47] Pannizzi L., Catalano S., Miarelli C., Cioni P.L., Campeol E., In vitro antimicrobial activity of extracts and isolated constituents of Geum rivale, Phytother. Res., 2000, 14, 561–563 http://dx.doi.org/10.1002/1099-1573(200011)14:7<561::AID-PTR651>3.0.CO;2-HCrossrefGoogle Scholar

  • [48] Clark A.M., El-Feraly E.S., Li W.S., Antimicrobial activity of phenolic constituents of Magnolia grandiflora L., J. Pharm. Sci., 1981, 70, 951–952 http://dx.doi.org/10.1002/jps.2600700833CrossrefGoogle Scholar

  • [49] Wächter G.A., Valcic S., Franzblau S.C., Suarez E., Timmermann B.N., Antitubercular activity of triterpenoids from Lippia turbinata, J. Nat. Prod., 2001, 64, 37–41 http://dx.doi.org/10.1021/np000267bCrossrefGoogle Scholar

  • [50] Caliş T., Satana M.E., Yürüker A., Kelican P., Demirdamar R., Alaçam R., et al., Triterpene saponins from Cyclamen mirabile and their biological activities, J. Nat. Prod., 1997, 60, 315–318 http://dx.doi.org/10.1021/np960658jCrossrefGoogle Scholar

  • [51] Yeung M.-F., Lau C.S.B., Chan R.C.Y., Zong Y., Che C.-T., Search for antibacterial constituents from a Tibetan medical plant, Gentianopsis paludosa, Phytother. Res., 2009, 23, 123–125 http://dx.doi.org/10.1002/ptr.2506CrossrefGoogle Scholar

  • [52] Jiménez A., Meckes M., Alvarez V., Torres J., Parra R., Secondary metabolites from Chamaedora tepejilote (Palmae) are active against Mycobacterium tuberculosis, Phytother. Res., 2005, 19, 320–322 http://dx.doi.org/10.1002/ptr.1664CrossrefGoogle Scholar

  • [53] da Silva Filho A.A., de Sousa J.P., Soares S., Furtado N.A., Andrade e Silva M.L., Cunha W.R., et al., Antimicrobial activity of the extract and isolated compounds from Baccharis dracunculifolia D.C. (Asteraceae), Z. Naturforsch, 2008, 63, 40–46 Google Scholar

  • [54] Takechi M., Tanaka Y., Structure-activity relationships of synthetic methyl ursolate glycosides, Phytochemistry, 1993, 34, 675–677 http://dx.doi.org/10.1016/0031-9422(93)85338-RCrossrefGoogle Scholar

  • [55] Woldemichael G.M., Franzblau S.G, Zhang F., Wang Y., Timmerman B.N., Inhibitory effect of sterols from Ruprechtia triflora and diterpenes from Calceolaria pinnifolia on the growth of Mycobacterium tuberculosis, Planta Med., 2003, 69, 628–631 http://dx.doi.org/10.1055/s-2003-41109CrossrefGoogle Scholar

  • [56] Mallavadhani U.V., Mahapatra A., Jamil K., Reddy P.S., Antimicrobial activity of some pentacyclic triterpenes and their synthesized 3-O-lipophilic chains, Biol. Pharm. Bull., 2004, 27, 1576–1579 http://dx.doi.org/10.1248/bpb.27.1576CrossrefGoogle Scholar

  • [57] Chattopadhyay D., Mati K., Kundu A.P., Chakraborty M.S., Bhadra R., Mandal S.C., et al., Antimicrobial activity of Alstonia macrophylla: a folklore of bay islands, J. Ethnopharmacol., 2001, 77, 49–55 http://dx.doi.org/10.1016/S0378-8741(01)00264-1CrossrefGoogle Scholar

  • [58] Chattopadhyay D., Arunachalan G., Mandal A.B., Sur T.K., Mandal S.C., Bhattacharya S.K., Antimicrobial and antiinflammatory activity of folklore: Mallotus peltatus leaf extract, J. Ethnopharmacol., 2002, 82, 229–237 http://dx.doi.org/10.1016/S0378-8741(02)00165-4CrossrefGoogle Scholar

  • [59] Zhang Y., Bao F., Hu J., Liang S., Zhang Y., Du G., et al., Antibacterial ligands and triterpenoids from Rostellularia procumbens, Planta Med., 2007, 73, 1596–1599 http://dx.doi.org/10.1055/s-2007-993747CrossrefGoogle Scholar

  • [60] Jaki B.U., Franzblau S.G., Chadwich L.R., Lakin D.C., Zhang F., Wang Y., et al., Purity-activity relationships of natural products: the case of anti-TB active ursolic acid, J. Nat. Prod., 2008, 71, 1742–1748 http://dx.doi.org/10.1021/np800329jCrossrefGoogle Scholar

  • [61] Changsen C., Franzblau S.G., Palittapongarnpin P., Improved green fluorescent protein reporter genebased microplate screening for antituberculosis compounds by utilizing an acetamidase promoter, Antimicrob. Agents Chemother., 2003, 47, 3682–3687 http://dx.doi.org/10.1128/AAC.47.12.3682-3687.2003CrossrefGoogle Scholar

  • [62] Setzer W.N., Rozmus G.F., Setzer M.C., Schmidt J.M., Vogler B., Reeb S., et al., Bioactive principles in the bark of Philidiostigma tropicum, J. Mol. Model., 2006, 12, 703–711 http://dx.doi.org/10.1007/s00894-005-0047-1CrossrefGoogle Scholar

  • [63] Lee J.H., Jeong C.S., Gardenia jasminoides Ellis ethanol extract and its constituents reduce the risks of gastritis and reverse gastric lesions in rats, Food Chem. Toxicol., 2009, 47, 1127–1131 http://dx.doi.org/10.1016/j.fct.2009.01.037CrossrefGoogle Scholar

  • [64] Akbar E., Malik A., Antimicrobial triterpenes from Debregeasia salicifolia, Nat. Prod. Lett., 2002, 16, 339–344 http://dx.doi.org/10.1080/10575630290033088CrossrefGoogle Scholar

  • [65] Chandramu C., Manohar R.D., Krupadanam D.G., Dashavantha R.V., Isolation, characterization and biological activity of betulic acid and ursolic acid from Vitex negundo L., Phytother. Res., 2003, 17, 129–134 http://dx.doi.org/10.1002/ptr.1088CrossrefGoogle Scholar

  • [66] Li X.Q., Gao K., Jia Z.J., Eremophilenolides and other constituents from the roots of Ligularia sagitta, Planta Med., 2003, 69, 356–360 http://dx.doi.org/10.1055/s-2003-38872CrossrefGoogle Scholar

  • [67] Jovel E.M., Zhou X.L., Ming D.S., Wahabe T.R., Towers G.H., Bioactivity-guided isolation of the active compounds from Rosa nutkana and quantitative analysis of ascorbic acid by HPLC, Can. J. Physiol. Pharmacol., 2007, 85, 865–871 http://dx.doi.org/10.1139/Y07-053CrossrefGoogle Scholar

  • [68] Niikawa M., Hayashi H., Sato T., Nagase H., Kito H., Isolation of substances from glossy privet (Ligustrum lucidum Alt.) inhibiting the mutagenicity of benzo[a]pyrene in bacteria, Mutat. Res., 1993, 319, 1–9 http://dx.doi.org/10.1016/0165-1218(93)90025-9CrossrefGoogle Scholar

  • [69] Maron D.M., Ames B.D., Revised methods for the Salmonella mutagenicity test, Mutation Res., 1983, 113, 173–215 CrossrefGoogle Scholar

  • [70] Lira Wde M., dos Santos F.V., Sannomiya M., Rodrigues C.M., Vilegas W., Varanda E.A., Modulatory effect of Byrsonima basiloba extracts on the mutagenicity of certain direct and indirect-acting mutagens in Salmonella typhimurium assays, J. Med. Food., 2008, 11, 111–119 http://dx.doi.org/10.1089/jmf.2007.553CrossrefGoogle Scholar

  • [71] Young H.S., Chung H.Y., Lee C.K., Park K.Y., Yokozawa T., Oura H., Ursolic acid inhibits aflatoxin B1-induced mutagenicity in a Salmonella assay system, Biol. Pharm. Bull., 1994, 17, 990–992 CrossrefGoogle Scholar

  • [72] Miyazawa M., Okuno Y., Imanishi K., Suppression of the SOS-inducing activity of mutagenic heterocyclic amine, Trp-P-1, by triterpenoid from Uncaria siniensis in Salmonella typhimurium TA1535/pSK1002 Umu test, J. Agric. Food Chem., 2005, 53, 2312–2315 http://dx.doi.org/10.1021/jf035430yCrossrefGoogle Scholar

  • [73] Janion C., Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli, Int. J. Biol. Sci., 2008, 23, 338–344 CrossrefGoogle Scholar

  • [74] Ohtsuka M., Fukuda K., Yano H., Kojiro M., Effect of nine active ingredients in Chinese herbal medicine sho-saiko-to on 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide mutagenicity, Jpn. J. Cancer Res., 1995, 86, 1131–1135 Google Scholar

  • [75] Lee K.T., Sohn I.C., Park H.J., Kim D.W., Jung G.O., Park K.Y., Essential moiety for antimutagenic and cytotoxic activity of hederagenin monodesmosides and bidesmosides isolated from the stem bark of Kalopanax pictus, Planta Med., 2000, 66, 329–332 http://dx.doi.org/10.1055/s-2000-8539CrossrefGoogle Scholar

  • [76] Park K.Y., Jung G.O., Choi J., Lee K.T., Park H.J., Potent antimutagenic and their anti-lipid peroxidative effect of kaikasaponin III and tectorigenin from the flower of Pueraria thunbergiana, Arch. Pharm. Res., 2002, 25, 320–324 http://dx.doi.org/10.1007/BF02976633CrossrefGoogle Scholar

  • [77] Wei H., Ca Q., Rahn R., Zhang X., Wang Y. Lebwohl M., DNA structural integrity and base composition affect ultraviolet light-induced oxidative DNA damage, Biochemistry, 1998, 37, 6485–6490 http://dx.doi.org/10.1021/bi972702fCrossrefGoogle Scholar

  • [78] Park J.T., Uehara T., How bacteria consume their own exoskeleton (turnover and recycling of cell wall peptidoglycan), Microbiol. Mol. Biol. Rev., 2008, 72, 211–227 http://dx.doi.org/10.1128/MMBR.00027-07CrossrefGoogle Scholar

  • [79] Kurek A., Grudniak A.M., Szwed M., Klicka A., Samluk Ł., Wolska K.I., et al., Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes, Antonie van Leeuwenhoek, 2010, 97, 61–68 http://dx.doi.org/10.1007/s10482-009-9388-6CrossrefGoogle Scholar

  • [80] Cossart P., Listeriology (1926–2007); the rise of a model pathogen, Microb. Infect., 2007, 9, 1143–1146 http://dx.doi.org/10.1016/j.micinf.2007.05.001CrossrefGoogle Scholar

  • [81] Charpentier E., Courvalin P., Antibiotic resistance in Listeria spp., Antimicrob. Agents Chemother., 1999, 43, 2103–2108 Google Scholar

  • [82] Kozai K., Suzuki J., Okada M., Nagasaka N., Effect of oleanolic acid-cyclodextrin inclusion compounds on dental caries by in vitro experiment and ratcaries model, Microbios, 1999, 97, 179–188 Google Scholar

  • [83] Chen J.-C., Ho T.-H., Chang Y.-S., Wu S.-L., Li C.-C., Hsiang C.-Y., Identification of Escherichia coli enterotoxin inhibitors from traditional medical herbs in silico, in vitro and in vivo analyses, J. Ethnopharmacol., 2009, 121, 372–378 http://dx.doi.org/10.1016/j.jep.2008.11.011CrossrefGoogle Scholar

  • [84] Holmgren J., Svennerholm A.M., Bacterial enteric infections and vaccine development, Gastroenterol. Clin. North Amer., 1992, 21, 283–302 Google Scholar

  • [85] Ren D., Zuo R., González Barrios A.F., Bedzyk L.A., Eldridge G.R., Pasmore M.E., et al., Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid, Appl. Environ. Microbiol., 2005, 71, 4022–4034 http://dx.doi.org/10.1128/AEM.71.7.4022-4034.2005CrossrefGoogle Scholar

  • [86] Li Y.-H., Lau P.C., Lee J.H., Ellen R.P., Cvitkovitch D.G., Natural genetic transformation of Streptococcus mutans growing in biofilms, J. Bacteriol., 2001, 183, 897–908 http://dx.doi.org/10.1128/JB.183.3.897-908.2001CrossrefGoogle Scholar

  • [87] Potera C., Forging a link between biofilms and disease, Science, 1999, 19, 1837–1838 http://dx.doi.org/10.1126/science.283.5409.1837CrossrefGoogle Scholar

  • [88] Wei Y., Lee J.-M., Richmond C., Blatner F.R., Rafalski J.A., Larossa R.A., High-density microarray-mediated gene expression profiling of Escherichia coli, J. Bacteriol., 2001, 183, 545–556 http://dx.doi.org/10.1128/JB.183.2.545-556.2001CrossrefGoogle Scholar

  • [89] Watnick P., Kotler R., Biofilm, city of microbes, J. Bacteriol., 2000, 182, 2675–2679 http://dx.doi.org/10.1128/JB.182.10.2675-2679.2000CrossrefGoogle Scholar

  • [90] Ramachandran S., Prasad N.R., Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes, Chem. Biol. Interact., 2008, 176, 99–107 http://dx.doi.org/10.1016/j.cbi.2008.08.010CrossrefGoogle Scholar

  • [91] Chu R., Griffin C., Staub R.D., Shoemaker M., Climent J., Leitman D., Cohen I., Shtivelman E., Fong S., Selective concomitant inhibition of mTORC1 and TORC2 activity in estrogen receptor negative breast cancer cells by BN107 and oleanolic acid, Int. J. Cancer, (in press), DOI:10.1002.ijc.25116 Google Scholar

  • [92] Kim J., Jang D.S., Kim H., Kim J.S., Anti-lipase and lipolytic activities of ursolic acid isolated from the roots of Actinidia arguta, Arch. Pharm. Res., 2009, 32, 983–987 http://dx.doi.org/10.1007/s12272-009-1702-3CrossrefGoogle Scholar

  • [93] Xi J., Chang Q., Chan C.K., Meng Z.Y., Wang G.N., Sun J.B., Wang Y.T., Tong H.H., Zheng Y., Formulation development and bioavailability evaluation of a self-nanoemulsified drug delivery system of oleanolic acid, AAPS Pharm. Sci. Tech., 2009, 10, 172–182 http://dx.doi.org/10.1208/s12249-009-9190-9CrossrefGoogle Scholar

About the article

Published Online: 2010-08-20

Published in Print: 2010-10-01


Citation Information: Open Life Sciences, Volume 5, Issue 5, Pages 543–553, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-010-0045-x.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anne Loesche, Michael Kahnt, Immo Serbian, Wolfgang Brandt, and René Csuk
Molecules, 2019, Volume 24, Number 5, Page 948
[2]
Tian Luan, Chunmei Jin, Chun-Mei Jin, Guo-Hua Gong, and Zhe-Shan Quan
Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, Volume 34, Number 1, Page 761
[3]
Niranjana Sri Sundaramoorthy, Harihar M. Mohan, Shankar Subramaniam, Thiagarajan Raman, Subramaniapillai Selva Ganesan, Aravind Sivasubamanian, and Saisubramanian Nagarajan
AMB Express, 2019, Volume 9, Number 1
[4]
Aurita Butkevičiūtė, Mindaugas Liaudanskas, Darius Kviklys, Kristina Zymonė, Raimondas Raudonis, Jonas Viškelis, Norbertas Uselis, and Valdimaras Janulis
International Journal of Food Properties, 2018, Volume 21, Number 1, Page 1716
[5]
Noura Dosoky and William Setzer
Plants, 2018, Volume 7, Number 1, Page 19
[6]
Muafia Jabeen, Sajjad Ahmad, Khadija Shahid, Abdul Sadiq, and Umer Rashid
Frontiers in Chemistry, 2018, Volume 6
[7]
Lucy Catteau, Nathalie Reichmann, Joshua Olson, Mariana Pinho, Victor Nizet, Françoise Van Bambeke, and Joëlle Quetin-Leclercq
Molecules, 2017, Volume 22, Number 12, Page 2245
[8]
Sajid Ali, Muhammad Nisar, Muhammad Qaisar, Aslam Khan, and Abid Ali Khan
Pharmaceutical Biology, 2017, Volume 55, Number 1, Page 1927
[9]
Yi Bi, Xian-Xuan Liu, Heng-Yuan Zhang, Xiao Yang, Ze-Yun Liu, Jing Lu, Peter Lewis, Chong-Zhi Wang, Jin-Yi Xu, Qing-Guo Meng, Cong Ma, and Chun-Su Yuan
Molecules, 2017, Volume 22, Number 4, Page 590
[10]
Aleksandra Owczarek, Łukasz Kuźma, Halina Wysokińska, and Monika Olszewska
Applied Sciences, 2016, Volume 6, Number 9, Page 244
[11]
F. Bonvicini, F. Antognoni, M. Mandrone, M. Protti, L. Mercolini, M. Lianza, G. A. Gentilomi, and F. Poli
Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 2017, Volume 151, Number 4, Page 649
[12]
Li-Rong Huang, Xiao-Jiang Hao, Qi-Ji Li, Dao-Ping Wang, Jian-Xin Zhang, Heng Luo, and Xiao-Sheng Yang
Journal of Natural Products, 2016, Volume 79, Number 4, Page 721
[13]
[14]
V. V. Pereira, R. R. Silva, M. H. dos Santos, D. F. Dias, M. E. C. Moreira, and J. A. Takahashi
Natural Product Research, 2016, Volume 30, Number 17, Page 1974
[15]
Fabio Sciubba, Maria Enrica Di Cocco, Raffaella Gianferri, Giorgio Capuani, Flavio Roberto De Salvador, Marco Fontanari, Daniela Gorietti, and Maurizio Delfini
Journal of Agricultural and Food Chemistry, 2015, Volume 63, Number 37, Page 8339
[16]
Antonia Fernández-Hernández, Antonio Martinez, Francisco Rivas, Jose A. García-Mesa, and Andres Parra
Journal of Agricultural and Food Chemistry, 2015, Volume 63, Number 17, Page 4269
[17]
Lirong Huang, Heng Luo, Qiji Li, Daoping Wang, Jianxin Zhang, Xiaojiang Hao, and Xiaosheng Yang
European Journal of Medicinal Chemistry, 2015, Volume 95, Page 64
[18]
Antonio Martinez, Alberto Perojil, Francisco Rivas, Marta Medina-O'Donnell, and Andres Parra
Tetrahedron, 2015, Volume 71, Number 5, Page 792
[19]
Wen Gu, Yun Hao, Guang Zhang, Shi-Fa Wang, Ting-Ting Miao, and Kang-Ping Zhang
Bioorganic & Medicinal Chemistry Letters, 2015, Volume 25, Number 3, Page 554
[20]
Andres Parra, Samuel Martin-Fonseca, Francisco Rivas, Fernando J. Reyes-Zurita, Marta Medina-O’Donnell, Eva E. Rufino-Palomares, Antonio Martinez, Andres Garcia-Granados, Jose A. Lupiañez, and Fernando Albericio
ACS Combinatorial Science, 2014, Volume 16, Number 8, Page 428
[21]
Yi-bei Zhang, Wen-zhi Yang, Chang-liang Yao, Rui-hong Feng, Min Yang, De-an Guo, and Wan-ying Wu
Fitoterapia, 2014, Volume 96, Page 39
[22]
Patrícia do Nascimento, Telma Lemos, Ayla Bizerra, Ângela Arriaga, Daniele Ferreira, Gilvandete Santiago, Raimundo Braz-Filho, and José Costa
Molecules, 2014, Volume 19, Number 1, Page 1317
[23]
Chunhua Zhou, Ying Zhang, Yanle Sheng, Daqiu Zhao, Sansan Lv, Yue Hu, and Jun Tao
International Journal of Molecular Sciences, 2011, Volume 12, Number 12, Page 655
[24]
Andres Parra, Samuel Martin-Fonseca, Francisco Rivas, Fernando J. Reyes-Zurita, Marta Medina-O'Donnell, Antonio Martinez, Andres Garcia-Granados, Jose A. Lupiañez, and Fernando Albericio
European Journal of Medicinal Chemistry, 2014, Volume 74, Page 278
[25]
Jun Hu, Jindan Wu, and Yong Ju
Chinese Journal of Chemistry, 2014, Volume 32, Number 2, Page 133
[26]
Fatemeh Saadat, Soroush Sardari, and Bahram Maleki
Molecular Informatics, 2013, Volume 32, Number 9-10, Page 802
[27]
Antonio Martinez, Francisco Rivas, Alberto Perojil, Andres Parra, Andres Garcia-Granados, and Antonia Fernandez-Vivas
Phytochemistry, 2013, Volume 94, Page 229
[28]
Vasily A. Ignatenko and Gregory P. Tochtrop
The Journal of Organic Chemistry, 2013, Volume 78, Number 8, Page 3821
[29]
Mangesh D. Vetal, Vikesh G. Lade, and Virendra K. Rathod
Chemical Engineering and Processing: Process Intensification, 2013, Volume 69, Page 24
[30]
Joelma Abadia Marciano de Paula, Maria do Rosário Rodrigues Silva, Maysa P. Costa, Danielle Guimarães Almeida Diniz, Fabyola A. S. Sá, Suzana Ferreira Alves, Élson Alves Costa, Roberta Campos Lino, and José Realino de Paula
Evidence-Based Complementary and Alternative Medicine, 2012, Volume 2012, Page 1
[31]
Augusta Caligiani, Giulia Malavasi, Gerardo Palla, Angela Marseglia, Massimiliano Tognolini, and Renato Bruni
Food Chemistry, 2013, Volume 136, Number 2, Page 735
[32]
Anna Szakiel, Cezary Pączkowski, Flora Pensec, and Christophe Bertsch
Phytochemistry Reviews, 2012, Volume 11, Number 2-3, Page 263
[33]
Robert A. Hill and Joseph D. Connolly
Natural Product Reports, 2012, Volume 29, Number 7, Page 780
[34]
P Madhu Kiran, A Vijaya Raju, and B Ganga Rao
Asian Pacific Journal of Tropical Biomedicine, 2012, Volume 2, Number 5, Page 352
[35]
Anna Kurek, Paulina Nadkowska, Sylwia Pliszka, and Krystyna I. Wolska
Phytomedicine, 2012, Volume 19, Number 6, Page 515
[36]
Noor Afshan Khan
European Journal of Chemistry, 2011, Volume 2, Number 2, Page 189
[37]
Farshad Kheiri, Reza Emamali Sabzi, Elham Jannatdoust, and Hassan Sedghi
Journal of Solid State Electrochemistry, 2011, Volume 15, Number 11-12, Page 2593
[38]
Andres Parra, Francisco Rivas, Samuel Martin-Fonseca, Andres Garcia-Granados, and Antonio Martinez
European Journal of Medicinal Chemistry, 2011, Volume 46, Number 12, Page 5991

Comments (0)

Please log in or register to comment.
Log in