Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Life Sciences

formerly Central European Journal of Biology

Editor-in-Chief: Ratajczak, Mariusz

1 Issue per year


IMPACT FACTOR 2016 (Open Life Sciences): 0.448

CiteScore 2016: 1.02

SCImago Journal Rank (SJR) 2016: 0.329
Source Normalized Impact per Paper (SNIP) 2016: 0.621

Open Access
Online
ISSN
2391-5412
See all formats and pricing
More options …
Volume 6, Issue 2 (Apr 2011)

Issues

In vitro antifungal activity of propolis samples of Czech and Slovak origin

Vladimír Buchta
  • Department of Biological and Medical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, 500 05, Hradec Králové, Czech Republic
  • Department of Clinical Microbiology, Charles University in Prague, University Hospital and Faculty of Medicine in Hradec Králové, 500 05, Hradec Králové, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Černý
  • Department of Biological and Medical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, 500 05, Hradec Králové, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Veronika Opletalová
  • Department of Pharmaceutical Chemistry and Drug Control, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, 500 05, Hradec Králové, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-02-04 | DOI: https://doi.org/10.2478/s11535-010-0112-3

Abstract

Propolis has been used in traditional folk medicine for ages owing to a number of biological effects. Four propolis samples of Czech and one of Slovak origin were extracted using Soxhlet apparatus and analysed by thin-layer chromatography. Raw propolis samples and their extracts were tested by microdilution broth method to determine minimal inhibitory concentration (MIC) in eight strains of human pathogenic fungi. Raw propolis samples showed a lower in vitro antifungal activity than their extracts. In general, the petroleum ether extracts exhibited the highest in vitro antifungal activity (MIC range of 16–64 µg/ml). The content of flavonoids in the samples varied according to region. The highest amount of flavonoids was found in sample A that originated from Broumov (4%). The most susceptible to the propolis extracts were Trichophyton mentagrophytes and Candida albicans. The propolis samples of Czech and Slovak origin and their extracts showed a considerable in vitro antifungal effect which was associated especially with nonpolar petroleum ether and toluene extracts. There was only a partial correlation between flavonoids content and in vitro antifungal activity.

Keywords: Propolis; Flavonoids; In vitro antifungal activity; Pathogenic fungi; TLC; Soxhlet extractor

  • [1] Lotfy M., Biological activity of bee propolis in health and disease, Asian Pac. J. Cancer Prev., 2006, 7, 22–31 Google Scholar

  • [2] Cushnie T.P., Lamb A.J., Antimicrobial activity of flavonoids, Int. J. Antimicrob. Agents, 2005, 26, 343–356 http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002CrossrefGoogle Scholar

  • [3] Bankova V.S., De Castro S.L., Marcucci M.C., Propolis: recent advances in chemistry, Apidologie, 2000, 31, 3–15 http://dx.doi.org/10.1051/apido:2000102CrossrefGoogle Scholar

  • [4] Silici S., Kutluca S., Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region, J. Ethnopharmacol., 2005, 13, 99, 69–73 CrossrefGoogle Scholar

  • [5] Banskota A.H., Tezuka Y., Kadota S., Recent progress in pharmacological research of propolis, Phytother Res., 2001, 15, 561–571 http://dx.doi.org/10.1002/ptr.1029CrossrefGoogle Scholar

  • [6] Kujumgiev A., Tsvetkova I., Serkedjieva Y., Bankova V., Christov R., Popova S., Antibacterial, antifungal and antiviral activity of propolis of different geographic origin, J. Ethnopharmacol., 1999, 64, 235–240 http://dx.doi.org/10.1016/S0378-8741(98)00131-7CrossrefGoogle Scholar

  • [7] Burdock G.A., Review of the biological properties and toxicity of bee propolis, Food Chem. Toxicol., 1998, 36, 347–363 http://dx.doi.org/10.1016/S0278-6915(97)00145-2CrossrefGoogle Scholar

  • [8] Vural A., Polat Z.A., Topalkara A., Toker M.I., Erdogan H., Arici M.K., et al., The effect of propolis in experimental Acanthamoeba keratitis, Clin. Exp. Ophthalmol., 2007, 35, 749–754 http://dx.doi.org/10.1111/j.1442-9071.2007.01620.xCrossrefGoogle Scholar

  • [9] Libério S.A., Pereira A.L., Araújo M.J., Dutra R.P., Nascimento F.R., Monteiro-Neto V., et al., The potential use of propolis as a cariostatic agent and its actions on mutans group streptococci, J. Ethnopharmacol., 2009, 17, 125, 1–9 CrossrefGoogle Scholar

  • [10] Medić-Sarić M., Rastija V., Bojić M., Males Z., From functional food to medicinal product: systematic approach in analysis of polyphenolics from propolis and wine, Nutr. J., 2009, 22, 8, 33 Google Scholar

  • [11] Vennat B., Arvouet-Grand A., Gross D., Qualitative and quantitative analysis of flavonoids and identification of phenolic acids from a propolis extract, J. Pharm. Belg., 1995, 50, 438–444 Google Scholar

  • [12] Medić-Sarić M., Jasprica I., Smolcić-Bubalo A., Mornar A., Optimization of chromatographic conditions in thin layer chromatography of flavonoids and phenolic acids, Croat. Chem. Acta, 2004, 77, 361–366 Google Scholar

  • [13] Arvouet-Grand A., Vennat B., Pourrat A., Legret P., Standardisation d’un extrait de propolis et identification des principaux constituants, J. Pharm. Belg., 1994, 49, 462–468 Google Scholar

  • [14] Clinical and Laboratory Standards Institute, Reference method for broth dilution antifungal susceptibility testing of yeasts, Approved Standard — 3rd Ed., CSLI document M27-A3, Clinical and Laboratory Standards Institute, Wayne, PA 19087-1898, USA, 2008 Google Scholar

  • [15] Clinical and Laboratory Standards Institute, Reference method for broth dilution antifungal susceptibility testing of filamentous fungi, Approved Standard — 2nd Ed., CSLI document M38-A2, Clinical and Laboratory Standards Institute, Wayne, PA 19087-1898, USA, 2008 Google Scholar

  • [16] Bankova V.S., Popov S.S., Marekov N.L., Highperformance liquid chromatographic analysis of flavonoids from propolis, J. Chromatogr., 1982, 24, 135–143 http://dx.doi.org/10.1016/S0021-9673(00)87255-6CrossrefGoogle Scholar

  • [17] Bonvehí J.S., Coll F.V., Phenolic composition of propolis from China and South America, Z. Naturforsch., 1994, 49C, 712–718 Google Scholar

  • [18] Woisky R.G., Salatino A., Analysis of propolis. some parameters and procedures for chemical quality control, J. Apic. Res., 1998, 37, 99–105 Google Scholar

  • [19] Markham K.R., Techniques of flavonoid identification, Academic Press, London, 1982 Google Scholar

  • [20] Metzner J., Schneidewind E.M., Friedrich E., Zur Wirkung von Propolis und Pinocembrin auf Sprosspilze (Effect of propolis and pinocembrin on fungi), Pharmazie, 1977, 32, 730, (in German) Google Scholar

  • [21] Quiroga E.N., Sampietro D.A., Soberón J.R., Sgariglia M.A., Vattuone M.A., Propolis from the northwest of Argentina as a source of antifungal principles, J. Appl. Microbiol., 2006, 101, 103–110 http://dx.doi.org/10.1111/j.1365-2672.2006.02904.xCrossrefGoogle Scholar

  • [22] Ota C., Unterkircher C., Fantinato V., Shimizu M.T., Antifungal activity of propolis on different species of Candida, Mycoses, 2001, 44, 375–378 http://dx.doi.org/10.1046/j.1439-0507.2001.00671.xCrossrefGoogle Scholar

  • [23] Koc A.N., Silici S., Ayangil D., Ferahbaş A., Cankaya S., Comparison of in vitro activities of antifungal drugs and ethanolic extract of propolis against Trichophyton rubrum and T. mentagrophytes by using a microdilution assay, Mycoses, 2005, 48, 205–210 http://dx.doi.org/10.1111/j.1439-0507.2005.01128.xCrossrefGoogle Scholar

  • [24] Park Y.K., Alencar S.M., Aguiar C.L., Botanical origin and chemical composition of Brazilian propolis, J. Agric. Food Chem., 2002, 50, 2502–2506 http://dx.doi.org/10.1021/jf011432bCrossrefGoogle Scholar

  • [25] Salomão K., Pereira P.R., Campos L.C., Borba C.M., Cabello P.H., Marcucci M.C., et al., Brazilian propolis: Correlation between chemical composition and antimicrobial activity, Evid. Based Complement. Alternat. Med., 2008, 5, 317–324 http://dx.doi.org/10.1093/ecam/nem058CrossrefGoogle Scholar

  • [26] Dalben-Dota K.F., Faria M.G., Bruschi M.L., Pelloso S.M., Lopes-Consolaro M.E., Svidzinski T.I., Antifungal activity of propolis extract against yeasts isolated from vaginal exudates, J. Altern. Complem. Med., 2010, 16, 285–290 http://dx.doi.org/10.1089/acm.2009.0281CrossrefGoogle Scholar

  • [27] Sawaya A.C., Palma A.M., Caetano F.M., Marcucci M.C., Da Silva Cunha I.B., Araujo C.E., et al., Comparative study of in vitro methods used to analyse the activity of propolis extracts with different compositions against species of Candida, Lett. Appl. Microbiol., 2002, 35, 203–207 http://dx.doi.org/10.1046/j.1472-765X.2002.01169.xCrossrefGoogle Scholar

  • [28] Lisá M., Leifertová I., Baloun J., Ein Betrag zur fungistatischen Wirkung von Propolis (A contribution to the antifungal effect of propolis), Folia Pharm., 1989, 13, 29–44, (in German) Google Scholar

  • [29] Opletalová V., Šedivý D., Chalcones and their heterocyclic analogues as a potential antifungal chemoterapeutics, Cesk. Slov. Farm., 1999, 48, 252–255, (in Czech) Google Scholar

  • [30] Popova M., Bankova V., Spassov S., Tsvetkova I., Naydenski C., Silva M.V., et al., New bioactive chalcones in propolis from El Salvador, Z. Naturforsch., 2001, 56, 593–596 Google Scholar

  • [31] Schneidewind E.M., Büge A., Kala H., Metzner J., Zschunke A., Identifizierung eines aus Propolis isolierten, antimikrobiel wirksamen Inhaltstoffes (Identification of an antimicrobially active constituent isolated from propolis), Pharmazie, 1979, 34, 103–106, (in German) Google Scholar

  • [32] Lopez S.N., Castelli M.V., Zacchino S.A., Dominguez J.N., Lobo G., Charris-Charris J., et al., In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall, Bioorg. Med. Chem., 2001, 9, 1999–2013 http://dx.doi.org/10.1016/S0968-0896(01)00116-XCrossrefGoogle Scholar

About the article

Published Online: 2011-02-04

Published in Print: 2011-04-01


Citation Information: Open Life Sciences, ISSN (Online) 2391-5412, DOI: https://doi.org/10.2478/s11535-010-0112-3.

Export Citation

© 2010 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ladislava Netíková, Petr Bogusch, and Petr Heneberg
Journal of Food Science, 2013, Volume 78, Number 9, Page M1421

Comments (0)

Please log in or register to comment.
Log in